Patients recovering from COVID-19 who presented with anosmia during their acute episode have behavioral, functional, and structural brain alterations.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
17 Aug 2024
Historique:
received: 06 05 2024
accepted: 08 08 2024
medline: 17 8 2024
pubmed: 17 8 2024
entrez: 16 8 2024
Statut: epublish

Résumé

Patients recovering from COVID-19 commonly exhibit cognitive and brain alterations, yet the specific neuropathological mechanisms and risk factors underlying these alterations remain elusive. Given the significant global incidence of COVID-19, identifying factors that can distinguish individuals at risk of developing brain alterations is crucial for prioritizing follow-up care. Here, we report findings from a sample of patients consisting of 73 adults with a mild to moderate SARS-CoV-2 infection without signs of respiratory failure and 27 with infections attributed to other agents and no history of COVID-19. The participants underwent cognitive screening, a decision-making task, and MRI evaluations. We assessed for the presence of anosmia and the requirement for hospitalization. Groups did not differ in age or cognitive performance. Patients who presented with anosmia exhibited more impulsive alternative changes after a shift in probabilities (r =  - 0.26, p = 0.001), while patients who required hospitalization showed more perseverative choices (r = 0.25, p = 0.003). Anosmia correlated with brain measures, including decreased functional activity during the decision-making task, thinning of cortical thickness in parietal regions, and loss of white matter integrity. Hence, anosmia could be a factor to be considered when identifying at-risk populations for follow-up.

Identifiants

pubmed: 39152190
doi: 10.1038/s41598-024-69772-y
pii: 10.1038/s41598-024-69772-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

19049

Subventions

Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : FB0008
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1221837
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 11230607
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo,Chile
ID : 1190513
Organisme : Agencia Nacional de Investigación y Desarrollo,Chile
ID : 1190513

Informations de copyright

© 2024. The Author(s).

Références

Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).
pubmed: 35255491 pmcid: 9046077 doi: 10.1038/s41586-022-04569-5
Petersen, M. et al. Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Proc. Natl. Acad. Sci. 120, e2217232120 (2023).
pubmed: 37220275 pmcid: 10235949 doi: 10.1073/pnas.2217232120
de Paula, J. J. et al. Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Mol. Psychiatry 28, 553–563 (2023).
pubmed: 35701598 doi: 10.1038/s41380-022-01632-5
Zhao, S., Toniolo, S., Hampshire, A. & Husain, M. Effects of COVID-19 on cognition and brain health. Trends Cogn. Sci. 27, 1053–1067 (2023).
pubmed: 37657964 pmcid: 10789620 doi: 10.1016/j.tics.2023.08.008
Taquet, M., Geddes, J. R., Husain, M., Luciano, S. & Harrison, P. J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 8, 416–427 (2021).
pubmed: 33836148 pmcid: 8023694 doi: 10.1016/S2215-0366(21)00084-5
Ajčević, M. et al. Cerebral hypoperfusion in post-COVID-19 cognitively impaired subjects revealed by arterial spin labeling MRI. Sci. Rep. 13, 5808 (2023).
pubmed: 37037833 pmcid: 10086005 doi: 10.1038/s41598-023-32275-3
Ferrucci, R. et al. Brain positron emission tomography (PET) and cognitive abnormalities one year after COVID-19. J. Neurol. 270, 1–12 (2023).
doi: 10.1007/s00415-022-11543-8
Hampshire, A. et al. Multivariate profile and acute-phase correlates of cognitive deficits in a COVID-19 hospitalised cohort. eClinicalMedicine 47, 101417 (2022).
pubmed: 35505938 pmcid: 9048584 doi: 10.1016/j.eclinm.2022.101417
Michael, B. et al. Post-COVID cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction: national prospective study. (2024) https://doi.org/10.21203/rs.3.rs-3818580/v1
Johansson, A., Mohamed, M. S., Moulin, T. C. & Schiöth, H. B. Neurological manifestations of COVID-19: A comprehensive literature review and discussion of mechanisms. J. Neuroimmunol. 358, 577658 (2021).
pubmed: 34304141 pmcid: 8272134 doi: 10.1016/j.jneuroim.2021.577658
Vallée, A. Dysautonomia and Implications for Anosmia in Long COVID-19 Disease. J. Clin. Med. 10, 5514 (2021).
pubmed: 34884216 pmcid: 8658706 doi: 10.3390/jcm10235514
Yazdanpanah, N., Saghazadeh, A. & Rezaei, N. Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19). Rev. Neurosci. 31, 691–701 (2020).
pubmed: 32776905 doi: 10.1515/revneuro-2020-0039
Shelton, J. F. et al. The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste. Nat. Genet. 54, 121–124 (2022).
pubmed: 35039640 doi: 10.1038/s41588-021-00986-w
Butowt, R., Bilinska, K. & von Bartheld, C. S. Olfactory dysfunction in COVID-19: New insights into the underlying mechanisms. Trends Neurosci. 46, 75–90 (2023).
pubmed: 36470705 doi: 10.1016/j.tins.2022.11.003
Bilinska, K., Jakubowska, P., Bartheld, C. S. V. & Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci. 11, 1555–1562 (2020).
pubmed: 32379417 doi: 10.1021/acschemneuro.0c00210
Finlay, J. B. et al. Persistent post–COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci. Transl. Med. 14, eadd0484 (2022).
pubmed: 36542694 pmcid: 10317309 doi: 10.1126/scitranslmed.add0484
Pipolo, C. et al. Evidence of SARS-CoV-2 in nasal brushings and olfactory mucosa biopsies of COVID-19 patients. PLoS ONE 17, e0266740 (2022).
pubmed: 35413071 pmcid: 9004784 doi: 10.1371/journal.pone.0266740
de Melo, G. D. et al. COVID-19–related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 13, eabf8396 (2021).
pubmed: 33941622 doi: 10.1126/scitranslmed.abf8396
Meinhardt, J. et al. The neurobiology of SARS-CoV-2 infection. Nat. Rev. Neurosci. 25, 30–42 (2024).
pubmed: 38049610 doi: 10.1038/s41583-023-00769-8
Olichney, J. M. et al. Anosmia is very common in the Lewy body variant of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 76, 1342 (2005).
pubmed: 16170073 pmcid: 1739380 doi: 10.1136/jnnp.2003.032003
Dong, Y. et al. Anosmia, mild cognitive impairment, and biomarkers of brain aging in older adults. Alzheimer’s Dement. 19, 589–601 (2023).
doi: 10.1002/alz.12777
Doty, R. L. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate?. Lancet Neurol. 16, 478–488 (2017).
pubmed: 28504111 doi: 10.1016/S1474-4422(17)30123-0
Ouzzine, M., Gulberti, S., Ramalanjaona, N., Magdalou, J. & Fournel-Gigleux, S. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front. Cell. Neurosci. 8, 349 (2014).
pubmed: 25389387 pmcid: 4211562 doi: 10.3389/fncel.2014.00349
Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).
pubmed: 36639608 pmcid: 9839201 doi: 10.1038/s41579-022-00846-2
Eyheramendy, S. et al. Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test. iScience 24, 103419 (2021).
pubmed: 34786538 pmcid: 8580551 doi: 10.1016/j.isci.2021.103419
Enright, P. L. The six-minute walk test. Respir. Care 48, 783–785 (2003).
pubmed: 12890299
Chudasama, Y. & Robbins, T. W. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: Further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780 (2003).
pubmed: 14507977 pmcid: 6740430 doi: 10.1523/JNEUROSCI.23-25-08771.2003
Gueguen, M. C. M. et al. Anatomical dissociation of intracerebral signals for reward and punishment prediction errors in humans. Nat Commun 12, 3344 (2021).
pubmed: 34099678 pmcid: 8184756 doi: 10.1038/s41467-021-23704-w
Valdebenito-Oyarzo, G. et al. The parietal cortex has a causal role in ambiguity computations in humans. PLOS Biol. 22, e3002452 (2024).
pubmed: 38198502 pmcid: 10824459 doi: 10.1371/journal.pbio.3002452
Boscolo-Rizzo, P. et al. Two-year prevalence and recovery rate of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol. Head Neck Surg. 148, 889–891 (2022).
pubmed: 35925596 pmcid: 9353700 doi: 10.1001/jamaoto.2022.1983
Muccioli, L. et al. Cognitive and functional connectivity impairment in post-COVID-19 olfactory dysfunction. NeuroImage Clin. 38, 103410 (2023).
pubmed: 37104928 pmcid: 10165139 doi: 10.1016/j.nicl.2023.103410
Llana, T. et al. Association between olfactory dysfunction and mood disturbances with objective and subjective cognitive deficits in long-COVID. Front. Psychol. 14, 1076743 (2023).
pubmed: 36818111 pmcid: 9932904 doi: 10.3389/fpsyg.2023.1076743
Becker, J. H. et al. Assessment of Cognitive Function in Patients After COVID-19 Infection. JAMA Netw. Open 4, e2130645 (2021).
pubmed: 34677597 pmcid: 8536953 doi: 10.1001/jamanetworkopen.2021.30645
Bungenberg, J. et al. Long COVID-19: Objectifying most self-reported neurological symptoms. Ann. Clin. Transl. Neurol. 9, 141–154 (2022).
pubmed: 35060361 pmcid: 8862437 doi: 10.1002/acn3.51496
Jaywant, A. et al. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacol 46, 2235–2240 (2021).
doi: 10.1038/s41386-021-00978-8
Taurisano, P. et al. The COVID-19 Stress Perceived on Social Distance and Gender-Based Implications. Front. Psychol. 13, 846097 (2022).
pubmed: 35615201 pmcid: 9126176 doi: 10.3389/fpsyg.2022.846097
Hampshire, A. et al. Cognitive deficits in people who have recovered from COVID-19. Eclinicalmedicine 39, 101044 (2021).
pubmed: 34316551 pmcid: 8298139 doi: 10.1016/j.eclinm.2021.101044
Chang, L. et al. Changes in brain activation patterns during working memory tasks in people with post-COVID condition and persistent neuropsychiatric symptoms. Neurology 100, e2409–e2423 (2023).
pubmed: 37185175 pmcid: 10256123 doi: 10.1212/WNL.0000000000207309
Han, M. et al. Altered dynamic and static brain activity and functional connectivity in COVID-19 patients: a preliminary study. NeuroReport https://doi.org/10.1097/wnr.0000000000002009 (2024).
doi: 10.1097/wnr.0000000000002009 pubmed: 38874950
Gao, Y. et al. Decision-making ability limitations and brain neural activity changes in healthcare workers after mild COVID-19. Neurosci. Res. https://doi.org/10.1016/j.neures.2024.02.001 (2024).
doi: 10.1016/j.neures.2024.02.001 pubmed: 38355017
Li, R. et al. Altered intrinsic brain activity and functional connectivity in COVID-19 hospitalized patients at 6-month follow-up. BMC Infect. Dis. 23, 521 (2023).
pubmed: 37553613 pmcid: 10410836 doi: 10.1186/s12879-023-08331-8
Churchill, N. W. et al. Persistent post-COVID headache is associated with suppression of scale-free functional brain dynamics in non-hospitalized individuals. Brain Behav. 13, e3212 (2023).
pubmed: 37872889 pmcid: 10636408 doi: 10.1002/brb3.3212
Zhang, H., Chung, T.W.-H., Wong, F.K.-C., Hung, I.F.-N. & Mak, H.K.-F. Changes in the Intranetwork and Internetwork Connectivity of the Default Mode Network and Olfactory Network in Patients with COVID-19 and Olfactory Dysfunction. Brain Sci. 12, 511 (2022).
pubmed: 35448042 pmcid: 9029634 doi: 10.3390/brainsci12040511
Wingrove, J. et al. Aberrant olfactory network functional connectivity in people with olfactory dysfunction following COVID-19 infection: an exploratory, observational study. eClinicalMedicine 58, 101883 (2023).
pubmed: 36883140 pmcid: 9980836 doi: 10.1016/j.eclinm.2023.101883
Invernizzi, A. et al. Covid-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study. medRxiv 2023.07.19.23292909 (2023) https://doi.org/10.1101/2023.07.19.23292909 .
Yulug, B. et al. Infection with COVID-19 is no longer a public emergency: But what about degenerative dementia?. J. Méd. Virol. 95, e29072 (2023).
pubmed: 37724347 doi: 10.1002/jmv.29072
Jin, P., Cui, F., Xu, M., Ren, Y. & Zhang, L. Altered brain function and structure pre- and post- COVID-19 infection: a longitudinal study. Neurol. Sci. 45, 1–9 (2024).
pubmed: 38049550 doi: 10.1007/s10072-023-07236-3
Kafali, H. Y. et al. The effect of SARS-CoV-2 virus on resting-state functional connectivity during adolescence: Investigating brain correlates of psychotic-like experiences and SARS-CoV-2 related inflammation response. Psychiatry Res. Neuroimaging 336, 111746 (2023).
pubmed: 37979347 doi: 10.1016/j.pscychresns.2023.111746
Fu, Z. et al. Dynamic functional network connectivity associated with post-traumatic stress symptoms in COVID-19 survivors. Neurobiol. Stress 15, 100377 (2021).
pubmed: 34377750 pmcid: 8339567 doi: 10.1016/j.ynstr.2021.100377
Scardua-Silva, L. et al. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci. Rep. 14, 1758 (2024).
pubmed: 38242927 pmcid: 10798999 doi: 10.1038/s41598-024-52005-7
Clemente, L. et al. Prefrontal dysfunction in post-COVID-19 hyposmia: an EEG/fNIRS study. Front. Hum. Neurosci. 17, 1240831 (2023).
pubmed: 37829821 pmcid: 10564993 doi: 10.3389/fnhum.2023.1240831
Zhang, W. et al. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. bioRxiv 2023.07.20.549891 (2023) https://doi.org/10.1101/2023.07.20.549891 .
Clouston, S. et al. (2024) Neuroinflammatory imaging markers in white matter: insights into the cerebral consequences of post-acute sequelae of COVID-19 (PASC). Res. Sq. https://doi.org/10.21203/rs.3.rs-3760289/v1 .
Yildirim, D., Kandemirli, S. G., Sanli, D. E. T., Akinci, O. & Altundag, A. A Comparative Olfactory MRI, DTI and fMRI Study of COVID-19 Related Anosmia and Post Viral Olfactory Dysfunction. Acad. Radiol. 29, 31–41 (2022).
pubmed: 34810059 doi: 10.1016/j.acra.2021.10.019
Hannum, M. E. et al. Objective Sensory Testing Methods Reveal a Higher Prevalence of Olfactory Loss in COVID-19–Positive Patients Compared to Subjective Methods: A Systematic Review and Meta-Analysis. Chem. Senses 45, 865–874 (2020).
pubmed: 33245136
Guan, W.-J. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020).
pubmed: 32109013 doi: 10.1056/NEJMoa2002032
Varghese, G. M., John, R., Manesh, A., Karthik, R. & Abraham, O. C. Clinical management of COVID-19. Indian J. Méd. Res. 151, 401–410 (2020).
pubmed: 32611911 pmcid: 7530435 doi: 10.4103/ijmr.IJMR_957_20
Liu, J., Liu, S., Wei, H. & Yang, X. Epidemiology, clinical characteristics of the first cases of COVID-19. Eur. J. Clin. Investig. 50, e13364 (2020).
doi: 10.1111/eci.13364
Ihnen, J., Antivilo, A., Muñoz-Neira, C. & Slachevsky, A. Chilean version of the INECO Frontal Screening (IFS-Ch): Psychometric properties and diagnostic accuracy. Dement. Neuropsychol. 7, 40–47 (2013).
doi: 10.1590/S1980-57642013DN70100007
Bruno, D. et al. Validación argentino-chilena de la versión en español del test Addenbrooke’s Cognitive Examination III para el diagnóstico de demencia. Neurología 35, 82–88 (2020).
pubmed: 28865943 doi: 10.1016/j.nrl.2017.06.004
Crockett, M. A., Martínez, V. & Ordóñez-Carrasco, J. L. Propiedades psicométricas de la escala Generalized Anxiety Disorder 7-Item (GAD-7) en una muestra comunitaria de adolescentes en Chile. Rev. médica Chile 150, 458–464 (2022).
doi: 10.4067/S0034-98872022000400458
Borghero, F. et al. Tamizaje de episodio depresivo en adolescentes. Validacin del instrumento PHQ-9. Rev. mdica Chile 146: 479–486 (2018).
Zhang, L. & Gläscher, J. A brain network supporting social influences in human decision-making. Sci Adv 6, eabb4159 (2020).
pubmed: 32875112 pmcid: 7438106 doi: 10.1126/sciadv.abb4159
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).
pubmed: 21979382 doi: 10.1016/j.neuroimage.2011.09.015
Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013).
pubmed: 23668970 doi: 10.1016/j.neuroimage.2013.04.127
Worsley, K. J., Taylor, J. E., Tomaiuolo, F. & Lerch, J. Unified univariate and multivariate random field theory. Neuroimage 23, S189–S195 (2004).
pubmed: 15501088 doi: 10.1016/j.neuroimage.2004.07.026
Ivanovic, D. et al. Brain structural parameters correlate with university selection test outcomes in Chilean high school graduates. Sci Rep-uk 12, 20562 (2022).
doi: 10.1038/s41598-022-24958-0
Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C. & Tseng, W.-Y.I. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS one 8, e80713 (2013).
pubmed: 24348913 pmcid: 3858183 doi: 10.1371/journal.pone.0080713
Guevara, P. et al. Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage 61, 1083–1099 (2012).
pubmed: 22414992 doi: 10.1016/j.neuroimage.2012.02.071
Román, C. et al. Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. NeuroImage 262, 119550 (2022).
pubmed: 35944796 doi: 10.1016/j.neuroimage.2022.119550
Vázquez, A. et al. Parallel optimization of fiber bundle segmentation for massive tractography datasets. arXiv (2019) https://doi.org/10.48550/arxiv.1912.11494 .
Smith, S. M. et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006).
pubmed: 16624579 doi: 10.1016/j.neuroimage.2006.02.024
Lavín, C., Soto-Icaza, P., López, V. & Billeke, P. Another in need enhances prosociality and modulates frontal theta oscillations in young adults. Front. Psychiatry 14, 1160209 (2023).
pubmed: 37520238 pmcid: 10372441 doi: 10.3389/fpsyt.2023.1160209
Billeke, P., Zamorano, F., Chavez, M., Cosmelli, D. & Aboitiz, F. Functional cortical network in alpha band correlates with social bargaining. Plos One 9, e109829 (2014).
pubmed: 25286240 pmcid: 4186879 doi: 10.1371/journal.pone.0109829
Billeke, P., Zamorano, F., Cosmelli, D. & Aboitiz, F. Oscillatory brain activity correlates with risk perception and predicts social decisions. Cereb Cortex 23, 2872–2883 (2013).
pubmed: 22941720 doi: 10.1093/cercor/bhs269
Billeke, P. et al. Paradoxical expectation: Oscillatory brain activity reveals social interaction impairment in schizophrenia. Biol Psychiat 78, 421–431 (2014).
doi: 10.1016/j.biopsych.2015.02.012
Melloni, M. et al. Your perspective and my benefit: multiple lesion models of self-other integration strategies during social bargaining. Brain 139, 3022–3040 (2016).
pubmed: 27679483 doi: 10.1093/brain/aww231

Auteurs

Leonie Kausel (L)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile.

Alejandra Figueroa-Vargas (A)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
Laboratorio LaNCE, Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Francisco Zamorano (F)

Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile.
Facultad de Ciencias Para El Cuidado de La Salud, Universidad San Sebastián, Santiago, Chile.

Ximena Stecher (X)

Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile.
Departamento de Imágenes, Clínica Alemana de Santiago, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile.

Mauricio Aspé-Sánchez (M)

Laboratorio de Neurogenética, Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaiso, Chile.

Patricio Carvajal-Paredes (P)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.

Victor Márquez-Rodríguez (V)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.

María Paz Martínez-Molina (MP)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.

Claudio Román (C)

Centro de I&D en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile.

Patricio Soto-Fernández (P)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
Laboratorio de Neurogenética, Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaiso, Chile.
Departamento de Evaluación de Tecnologías Sanitarias y Salud Basada en Evidencia, División de Planificación Sanitaria, Subsecretaría de Salud Pública, Ministerio de Salud, Santiago, Chile.

Gabriela Valdebenito-Oyarzo (G)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.

Carla Manterola (C)

Departamento de Pediatría, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile.

Reinaldo Uribe-San-Martín (R)

Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Servicio de Neurología, Hospital Dr. Sótero del Río, Santiago, Chile.

Claudio Silva (C)

Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile.
Departamento de Imágenes, Clínica Alemana de Santiago, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile.

Rodrigo Henríquez-Ch (R)

Laboratorio LaNCE, Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Francisco Aboitiz (F)

Laboratorio LaNCE, Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Departamento de Psiquiatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Rafael Polania (R)

Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Pamela Guevara (P)

Facultad de Ingeniería, Universidad de Concepción, Santiago, Chile.

Paula Muñoz-Venturelli (P)

Centro de Estudios Clínicos, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.

Patricia Soto-Icaza (P)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile. patriciasoto@udd.cl.

Pablo Billeke (P)

Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile. pbilleke@udd.cl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH