Patients recovering from COVID-19 who presented with anosmia during their acute episode have behavioral, functional, and structural brain alterations.
Cognitive impairments
DTI
Decision-making
Long-term COVID-19
MRI
SARS-CoV-2
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 Aug 2024
17 Aug 2024
Historique:
received:
06
05
2024
accepted:
08
08
2024
medline:
17
8
2024
pubmed:
17
8
2024
entrez:
16
8
2024
Statut:
epublish
Résumé
Patients recovering from COVID-19 commonly exhibit cognitive and brain alterations, yet the specific neuropathological mechanisms and risk factors underlying these alterations remain elusive. Given the significant global incidence of COVID-19, identifying factors that can distinguish individuals at risk of developing brain alterations is crucial for prioritizing follow-up care. Here, we report findings from a sample of patients consisting of 73 adults with a mild to moderate SARS-CoV-2 infection without signs of respiratory failure and 27 with infections attributed to other agents and no history of COVID-19. The participants underwent cognitive screening, a decision-making task, and MRI evaluations. We assessed for the presence of anosmia and the requirement for hospitalization. Groups did not differ in age or cognitive performance. Patients who presented with anosmia exhibited more impulsive alternative changes after a shift in probabilities (r = - 0.26, p = 0.001), while patients who required hospitalization showed more perseverative choices (r = 0.25, p = 0.003). Anosmia correlated with brain measures, including decreased functional activity during the decision-making task, thinning of cortical thickness in parietal regions, and loss of white matter integrity. Hence, anosmia could be a factor to be considered when identifying at-risk populations for follow-up.
Identifiants
pubmed: 39152190
doi: 10.1038/s41598-024-69772-y
pii: 10.1038/s41598-024-69772-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
19049Subventions
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : FB0008
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1221837
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 11230607
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : 1211227
Organisme : Agencia Nacional de Investigación y Desarrollo,Chile
ID : 1190513
Organisme : Agencia Nacional de Investigación y Desarrollo,Chile
ID : 1190513
Informations de copyright
© 2024. The Author(s).
Références
Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).
pubmed: 35255491
pmcid: 9046077
doi: 10.1038/s41586-022-04569-5
Petersen, M. et al. Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Proc. Natl. Acad. Sci. 120, e2217232120 (2023).
pubmed: 37220275
pmcid: 10235949
doi: 10.1073/pnas.2217232120
de Paula, J. J. et al. Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Mol. Psychiatry 28, 553–563 (2023).
pubmed: 35701598
doi: 10.1038/s41380-022-01632-5
Zhao, S., Toniolo, S., Hampshire, A. & Husain, M. Effects of COVID-19 on cognition and brain health. Trends Cogn. Sci. 27, 1053–1067 (2023).
pubmed: 37657964
pmcid: 10789620
doi: 10.1016/j.tics.2023.08.008
Taquet, M., Geddes, J. R., Husain, M., Luciano, S. & Harrison, P. J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 8, 416–427 (2021).
pubmed: 33836148
pmcid: 8023694
doi: 10.1016/S2215-0366(21)00084-5
Ajčević, M. et al. Cerebral hypoperfusion in post-COVID-19 cognitively impaired subjects revealed by arterial spin labeling MRI. Sci. Rep. 13, 5808 (2023).
pubmed: 37037833
pmcid: 10086005
doi: 10.1038/s41598-023-32275-3
Ferrucci, R. et al. Brain positron emission tomography (PET) and cognitive abnormalities one year after COVID-19. J. Neurol. 270, 1–12 (2023).
doi: 10.1007/s00415-022-11543-8
Hampshire, A. et al. Multivariate profile and acute-phase correlates of cognitive deficits in a COVID-19 hospitalised cohort. eClinicalMedicine 47, 101417 (2022).
pubmed: 35505938
pmcid: 9048584
doi: 10.1016/j.eclinm.2022.101417
Michael, B. et al. Post-COVID cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction: national prospective study. (2024) https://doi.org/10.21203/rs.3.rs-3818580/v1
Johansson, A., Mohamed, M. S., Moulin, T. C. & Schiöth, H. B. Neurological manifestations of COVID-19: A comprehensive literature review and discussion of mechanisms. J. Neuroimmunol. 358, 577658 (2021).
pubmed: 34304141
pmcid: 8272134
doi: 10.1016/j.jneuroim.2021.577658
Vallée, A. Dysautonomia and Implications for Anosmia in Long COVID-19 Disease. J. Clin. Med. 10, 5514 (2021).
pubmed: 34884216
pmcid: 8658706
doi: 10.3390/jcm10235514
Yazdanpanah, N., Saghazadeh, A. & Rezaei, N. Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19). Rev. Neurosci. 31, 691–701 (2020).
pubmed: 32776905
doi: 10.1515/revneuro-2020-0039
Shelton, J. F. et al. The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste. Nat. Genet. 54, 121–124 (2022).
pubmed: 35039640
doi: 10.1038/s41588-021-00986-w
Butowt, R., Bilinska, K. & von Bartheld, C. S. Olfactory dysfunction in COVID-19: New insights into the underlying mechanisms. Trends Neurosci. 46, 75–90 (2023).
pubmed: 36470705
doi: 10.1016/j.tins.2022.11.003
Bilinska, K., Jakubowska, P., Bartheld, C. S. V. & Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci. 11, 1555–1562 (2020).
pubmed: 32379417
doi: 10.1021/acschemneuro.0c00210
Finlay, J. B. et al. Persistent post–COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci. Transl. Med. 14, eadd0484 (2022).
pubmed: 36542694
pmcid: 10317309
doi: 10.1126/scitranslmed.add0484
Pipolo, C. et al. Evidence of SARS-CoV-2 in nasal brushings and olfactory mucosa biopsies of COVID-19 patients. PLoS ONE 17, e0266740 (2022).
pubmed: 35413071
pmcid: 9004784
doi: 10.1371/journal.pone.0266740
de Melo, G. D. et al. COVID-19–related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 13, eabf8396 (2021).
pubmed: 33941622
doi: 10.1126/scitranslmed.abf8396
Meinhardt, J. et al. The neurobiology of SARS-CoV-2 infection. Nat. Rev. Neurosci. 25, 30–42 (2024).
pubmed: 38049610
doi: 10.1038/s41583-023-00769-8
Olichney, J. M. et al. Anosmia is very common in the Lewy body variant of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 76, 1342 (2005).
pubmed: 16170073
pmcid: 1739380
doi: 10.1136/jnnp.2003.032003
Dong, Y. et al. Anosmia, mild cognitive impairment, and biomarkers of brain aging in older adults. Alzheimer’s Dement. 19, 589–601 (2023).
doi: 10.1002/alz.12777
Doty, R. L. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate?. Lancet Neurol. 16, 478–488 (2017).
pubmed: 28504111
doi: 10.1016/S1474-4422(17)30123-0
Ouzzine, M., Gulberti, S., Ramalanjaona, N., Magdalou, J. & Fournel-Gigleux, S. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front. Cell. Neurosci. 8, 349 (2014).
pubmed: 25389387
pmcid: 4211562
doi: 10.3389/fncel.2014.00349
Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).
pubmed: 36639608
pmcid: 9839201
doi: 10.1038/s41579-022-00846-2
Eyheramendy, S. et al. Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test. iScience 24, 103419 (2021).
pubmed: 34786538
pmcid: 8580551
doi: 10.1016/j.isci.2021.103419
Enright, P. L. The six-minute walk test. Respir. Care 48, 783–785 (2003).
pubmed: 12890299
Chudasama, Y. & Robbins, T. W. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: Further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780 (2003).
pubmed: 14507977
pmcid: 6740430
doi: 10.1523/JNEUROSCI.23-25-08771.2003
Gueguen, M. C. M. et al. Anatomical dissociation of intracerebral signals for reward and punishment prediction errors in humans. Nat Commun 12, 3344 (2021).
pubmed: 34099678
pmcid: 8184756
doi: 10.1038/s41467-021-23704-w
Valdebenito-Oyarzo, G. et al. The parietal cortex has a causal role in ambiguity computations in humans. PLOS Biol. 22, e3002452 (2024).
pubmed: 38198502
pmcid: 10824459
doi: 10.1371/journal.pbio.3002452
Boscolo-Rizzo, P. et al. Two-year prevalence and recovery rate of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol. Head Neck Surg. 148, 889–891 (2022).
pubmed: 35925596
pmcid: 9353700
doi: 10.1001/jamaoto.2022.1983
Muccioli, L. et al. Cognitive and functional connectivity impairment in post-COVID-19 olfactory dysfunction. NeuroImage Clin. 38, 103410 (2023).
pubmed: 37104928
pmcid: 10165139
doi: 10.1016/j.nicl.2023.103410
Llana, T. et al. Association between olfactory dysfunction and mood disturbances with objective and subjective cognitive deficits in long-COVID. Front. Psychol. 14, 1076743 (2023).
pubmed: 36818111
pmcid: 9932904
doi: 10.3389/fpsyg.2023.1076743
Becker, J. H. et al. Assessment of Cognitive Function in Patients After COVID-19 Infection. JAMA Netw. Open 4, e2130645 (2021).
pubmed: 34677597
pmcid: 8536953
doi: 10.1001/jamanetworkopen.2021.30645
Bungenberg, J. et al. Long COVID-19: Objectifying most self-reported neurological symptoms. Ann. Clin. Transl. Neurol. 9, 141–154 (2022).
pubmed: 35060361
pmcid: 8862437
doi: 10.1002/acn3.51496
Jaywant, A. et al. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacol 46, 2235–2240 (2021).
doi: 10.1038/s41386-021-00978-8
Taurisano, P. et al. The COVID-19 Stress Perceived on Social Distance and Gender-Based Implications. Front. Psychol. 13, 846097 (2022).
pubmed: 35615201
pmcid: 9126176
doi: 10.3389/fpsyg.2022.846097
Hampshire, A. et al. Cognitive deficits in people who have recovered from COVID-19. Eclinicalmedicine 39, 101044 (2021).
pubmed: 34316551
pmcid: 8298139
doi: 10.1016/j.eclinm.2021.101044
Chang, L. et al. Changes in brain activation patterns during working memory tasks in people with post-COVID condition and persistent neuropsychiatric symptoms. Neurology 100, e2409–e2423 (2023).
pubmed: 37185175
pmcid: 10256123
doi: 10.1212/WNL.0000000000207309
Han, M. et al. Altered dynamic and static brain activity and functional connectivity in COVID-19 patients: a preliminary study. NeuroReport https://doi.org/10.1097/wnr.0000000000002009 (2024).
doi: 10.1097/wnr.0000000000002009
pubmed: 38874950
Gao, Y. et al. Decision-making ability limitations and brain neural activity changes in healthcare workers after mild COVID-19. Neurosci. Res. https://doi.org/10.1016/j.neures.2024.02.001 (2024).
doi: 10.1016/j.neures.2024.02.001
pubmed: 38355017
Li, R. et al. Altered intrinsic brain activity and functional connectivity in COVID-19 hospitalized patients at 6-month follow-up. BMC Infect. Dis. 23, 521 (2023).
pubmed: 37553613
pmcid: 10410836
doi: 10.1186/s12879-023-08331-8
Churchill, N. W. et al. Persistent post-COVID headache is associated with suppression of scale-free functional brain dynamics in non-hospitalized individuals. Brain Behav. 13, e3212 (2023).
pubmed: 37872889
pmcid: 10636408
doi: 10.1002/brb3.3212
Zhang, H., Chung, T.W.-H., Wong, F.K.-C., Hung, I.F.-N. & Mak, H.K.-F. Changes in the Intranetwork and Internetwork Connectivity of the Default Mode Network and Olfactory Network in Patients with COVID-19 and Olfactory Dysfunction. Brain Sci. 12, 511 (2022).
pubmed: 35448042
pmcid: 9029634
doi: 10.3390/brainsci12040511
Wingrove, J. et al. Aberrant olfactory network functional connectivity in people with olfactory dysfunction following COVID-19 infection: an exploratory, observational study. eClinicalMedicine 58, 101883 (2023).
pubmed: 36883140
pmcid: 9980836
doi: 10.1016/j.eclinm.2023.101883
Invernizzi, A. et al. Covid-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study. medRxiv 2023.07.19.23292909 (2023) https://doi.org/10.1101/2023.07.19.23292909 .
Yulug, B. et al. Infection with COVID-19 is no longer a public emergency: But what about degenerative dementia?. J. Méd. Virol. 95, e29072 (2023).
pubmed: 37724347
doi: 10.1002/jmv.29072
Jin, P., Cui, F., Xu, M., Ren, Y. & Zhang, L. Altered brain function and structure pre- and post- COVID-19 infection: a longitudinal study. Neurol. Sci. 45, 1–9 (2024).
pubmed: 38049550
doi: 10.1007/s10072-023-07236-3
Kafali, H. Y. et al. The effect of SARS-CoV-2 virus on resting-state functional connectivity during adolescence: Investigating brain correlates of psychotic-like experiences and SARS-CoV-2 related inflammation response. Psychiatry Res. Neuroimaging 336, 111746 (2023).
pubmed: 37979347
doi: 10.1016/j.pscychresns.2023.111746
Fu, Z. et al. Dynamic functional network connectivity associated with post-traumatic stress symptoms in COVID-19 survivors. Neurobiol. Stress 15, 100377 (2021).
pubmed: 34377750
pmcid: 8339567
doi: 10.1016/j.ynstr.2021.100377
Scardua-Silva, L. et al. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci. Rep. 14, 1758 (2024).
pubmed: 38242927
pmcid: 10798999
doi: 10.1038/s41598-024-52005-7
Clemente, L. et al. Prefrontal dysfunction in post-COVID-19 hyposmia: an EEG/fNIRS study. Front. Hum. Neurosci. 17, 1240831 (2023).
pubmed: 37829821
pmcid: 10564993
doi: 10.3389/fnhum.2023.1240831
Zhang, W. et al. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. bioRxiv 2023.07.20.549891 (2023) https://doi.org/10.1101/2023.07.20.549891 .
Clouston, S. et al. (2024) Neuroinflammatory imaging markers in white matter: insights into the cerebral consequences of post-acute sequelae of COVID-19 (PASC). Res. Sq. https://doi.org/10.21203/rs.3.rs-3760289/v1 .
Yildirim, D., Kandemirli, S. G., Sanli, D. E. T., Akinci, O. & Altundag, A. A Comparative Olfactory MRI, DTI and fMRI Study of COVID-19 Related Anosmia and Post Viral Olfactory Dysfunction. Acad. Radiol. 29, 31–41 (2022).
pubmed: 34810059
doi: 10.1016/j.acra.2021.10.019
Hannum, M. E. et al. Objective Sensory Testing Methods Reveal a Higher Prevalence of Olfactory Loss in COVID-19–Positive Patients Compared to Subjective Methods: A Systematic Review and Meta-Analysis. Chem. Senses 45, 865–874 (2020).
pubmed: 33245136
Guan, W.-J. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020).
pubmed: 32109013
doi: 10.1056/NEJMoa2002032
Varghese, G. M., John, R., Manesh, A., Karthik, R. & Abraham, O. C. Clinical management of COVID-19. Indian J. Méd. Res. 151, 401–410 (2020).
pubmed: 32611911
pmcid: 7530435
doi: 10.4103/ijmr.IJMR_957_20
Liu, J., Liu, S., Wei, H. & Yang, X. Epidemiology, clinical characteristics of the first cases of COVID-19. Eur. J. Clin. Investig. 50, e13364 (2020).
doi: 10.1111/eci.13364
Ihnen, J., Antivilo, A., Muñoz-Neira, C. & Slachevsky, A. Chilean version of the INECO Frontal Screening (IFS-Ch): Psychometric properties and diagnostic accuracy. Dement. Neuropsychol. 7, 40–47 (2013).
doi: 10.1590/S1980-57642013DN70100007
Bruno, D. et al. Validación argentino-chilena de la versión en español del test Addenbrooke’s Cognitive Examination III para el diagnóstico de demencia. Neurología 35, 82–88 (2020).
pubmed: 28865943
doi: 10.1016/j.nrl.2017.06.004
Crockett, M. A., Martínez, V. & Ordóñez-Carrasco, J. L. Propiedades psicométricas de la escala Generalized Anxiety Disorder 7-Item (GAD-7) en una muestra comunitaria de adolescentes en Chile. Rev. médica Chile 150, 458–464 (2022).
doi: 10.4067/S0034-98872022000400458
Borghero, F. et al. Tamizaje de episodio depresivo en adolescentes. Validacin del instrumento PHQ-9. Rev. mdica Chile 146: 479–486 (2018).
Zhang, L. & Gläscher, J. A brain network supporting social influences in human decision-making. Sci Adv 6, eabb4159 (2020).
pubmed: 32875112
pmcid: 7438106
doi: 10.1126/sciadv.abb4159
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).
pubmed: 21979382
doi: 10.1016/j.neuroimage.2011.09.015
Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013).
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Worsley, K. J., Taylor, J. E., Tomaiuolo, F. & Lerch, J. Unified univariate and multivariate random field theory. Neuroimage 23, S189–S195 (2004).
pubmed: 15501088
doi: 10.1016/j.neuroimage.2004.07.026
Ivanovic, D. et al. Brain structural parameters correlate with university selection test outcomes in Chilean high school graduates. Sci Rep-uk 12, 20562 (2022).
doi: 10.1038/s41598-022-24958-0
Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C. & Tseng, W.-Y.I. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS one 8, e80713 (2013).
pubmed: 24348913
pmcid: 3858183
doi: 10.1371/journal.pone.0080713
Guevara, P. et al. Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage 61, 1083–1099 (2012).
pubmed: 22414992
doi: 10.1016/j.neuroimage.2012.02.071
Román, C. et al. Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. NeuroImage 262, 119550 (2022).
pubmed: 35944796
doi: 10.1016/j.neuroimage.2022.119550
Vázquez, A. et al. Parallel optimization of fiber bundle segmentation for massive tractography datasets. arXiv (2019) https://doi.org/10.48550/arxiv.1912.11494 .
Smith, S. M. et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006).
pubmed: 16624579
doi: 10.1016/j.neuroimage.2006.02.024
Lavín, C., Soto-Icaza, P., López, V. & Billeke, P. Another in need enhances prosociality and modulates frontal theta oscillations in young adults. Front. Psychiatry 14, 1160209 (2023).
pubmed: 37520238
pmcid: 10372441
doi: 10.3389/fpsyt.2023.1160209
Billeke, P., Zamorano, F., Chavez, M., Cosmelli, D. & Aboitiz, F. Functional cortical network in alpha band correlates with social bargaining. Plos One 9, e109829 (2014).
pubmed: 25286240
pmcid: 4186879
doi: 10.1371/journal.pone.0109829
Billeke, P., Zamorano, F., Cosmelli, D. & Aboitiz, F. Oscillatory brain activity correlates with risk perception and predicts social decisions. Cereb Cortex 23, 2872–2883 (2013).
pubmed: 22941720
doi: 10.1093/cercor/bhs269
Billeke, P. et al. Paradoxical expectation: Oscillatory brain activity reveals social interaction impairment in schizophrenia. Biol Psychiat 78, 421–431 (2014).
doi: 10.1016/j.biopsych.2015.02.012
Melloni, M. et al. Your perspective and my benefit: multiple lesion models of self-other integration strategies during social bargaining. Brain 139, 3022–3040 (2016).
pubmed: 27679483
doi: 10.1093/brain/aww231