JUN mediates the senescence associated secretory phenotype and immune cell recruitment to prevent prostate cancer progression.
Male
Prostatic Neoplasms
/ pathology
Animals
Mice
Humans
PTEN Phosphohydrolase
/ genetics
Disease Progression
Tumor Microenvironment
/ immunology
Senescence-Associated Secretory Phenotype
Proto-Oncogene Proteins c-jun
/ metabolism
Gene Expression Regulation, Neoplastic
Cell Line, Tumor
Gene Expression Profiling
Cellular Senescence
/ genetics
Disease Models, Animal
AP-1 transcription factors
Immune infiltration
JUN
Prostate cancer
SASP
Senescence
Journal
Molecular cancer
ISSN: 1476-4598
Titre abrégé: Mol Cancer
Pays: England
ID NLM: 101147698
Informations de publication
Date de publication:
29 May 2024
29 May 2024
Historique:
received:
29
11
2023
accepted:
10
05
2024
medline:
30
5
2024
pubmed:
30
5
2024
entrez:
29
5
2024
Statut:
epublish
Résumé
Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1β production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1β and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1β, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.
Sections du résumé
BACKGROUND
BACKGROUND
Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood.
METHODS
METHODS
We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment.
RESULTS
RESULTS
Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1β production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1β and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1β, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth.
CONCLUSIONS
CONCLUSIONS
Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.
Identifiants
pubmed: 38811984
doi: 10.1186/s12943-024-02022-x
pii: 10.1186/s12943-024-02022-x
doi:
Substances chimiques
PTEN Phosphohydrolase
EC 3.1.3.67
Proto-Oncogene Proteins c-jun
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
114Subventions
Organisme : Next Generation EU
ID : LX22NPO5102
Organisme : Österreichische Forschungsförderungsgesellschaft
ID : COMET
Informations de copyright
© 2024. The Author(s).
Références
Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A, Stattin P, Van Poppel H, La Vecchia C. Epidemiology and Prevention of Prostate Cancer. Eur Urol Oncol. 2021;4:877–92.
pubmed: 34716119
doi: 10.1016/j.euo.2021.09.006
Berenguer CV, Pereira F, Câmara JS, Pereira JAM. Underlying Features of Prostate Cancer-Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Curr Oncol. 2023;30:2300–21.
pubmed: 36826139
pmcid: 9955741
doi: 10.3390/curroncol30020178
Tan ME, Li J, Xu HE, Melcher K, Yong E. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 2015;36:3–23.
pubmed: 24909511
doi: 10.1038/aps.2014.18
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;4:222–34.
doi: 10.1038/nrurol.2018.9
Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34–45.
pubmed: 11900250
doi: 10.1038/35094009
Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–30.
pubmed: 16079851
pmcid: 1939938
doi: 10.1038/nature03918
Jung SH, Hwang HJ, Kang D, Park HA, Lee HC, Jeong D, Lee K, Park HJ, Ko YG, Lee JS. mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene. 2019;38:1639–50.
pubmed: 30337688
doi: 10.1038/s41388-018-0521-8
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179:813–27.
pubmed: 31675495
doi: 10.1016/j.cell.2019.10.005
Schosserer M, Grillari J, Breitenbach M. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy. Front Oncol. 2017;7: 315584.
doi: 10.3389/fonc.2017.00278
Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.
pubmed: 20078217
pmcid: 4166495
doi: 10.1146/annurev-pathol-121808-102144
Culig Z, Puhr M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol Cell Endocrinol. 2018;462:25–30.
pubmed: 28315704
doi: 10.1016/j.mce.2017.03.012
Pencik J, Schlederer M, Gruber W, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736.
pubmed: 26198641
doi: 10.1038/ncomms8736
Pencik J, Philippe C, Schlederer M, et al. STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway. Mol Cancer. 2023;22:133.
pubmed: 37573301
pmcid: 10422794
doi: 10.1186/s12943-023-01825-8
Ouyang X, Jessen WJ, Al-Ahmadie H, et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 2008. https://doi.org/10.1158/0008-5472.CAN-07-6055 .
doi: 10.1158/0008-5472.CAN-07-6055
pubmed: 18381418
Vogt PK. Fortuitous convergences: the beginnings of JUN. Nat Rev Cancer. 2002;2:465–9.
pubmed: 12189388
doi: 10.1038/nrc818
Lopez-Bergami P, Lau E, Ronai Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer. 2010;10:65–76.
pubmed: 20029425
pmcid: 2874064
doi: 10.1038/nrc2681
Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3:859–68.
pubmed: 14668816
doi: 10.1038/nrc1209
Cai C, Hsieh CL, Shemshedini L. c-Jun has multiple enhancing activities in the novel cross talk between the androgen receptor and Ets variant gene 1 in prostate cancer. Mol Cancer Res. 2007;5:725–35.
pubmed: 17634427
doi: 10.1158/1541-7786.MCR-06-0430
Bubulya A, Chen SY, Fisher C, Zheng Z, Shen X, Shemshedini L. c-Jun Potentiates the Functional Interaction between the Amino and Carboxyl Termini of the Androgen Receptor. J Biol Chem. 2001;276:44704–11.
pubmed: 11577103
doi: 10.1074/jbc.M107346200
Shaulian E. AP-1 - The Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22:894–9.
pubmed: 20060892
doi: 10.1016/j.cellsig.2009.12.008
Hübner A, Mulholland DJ, Standen CL, et al. JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proc Natl Acad Sci. 2012;109(30):12046 LP – 12051.
doi: 10.1073/pnas.1209660109
Thomsen MK, Bakiri L, Hasenfuss SC, Wu H, Morente M, Wagner EF. Loss of JUNB/AP-1 promotes invasive prostate cancer. Cell Death Differ. 2015;22:574–82.
pubmed: 25526087
doi: 10.1038/cdd.2014.213
Martínez-Zamudio RI, Roux P-F, de Freitas JANLF, et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol. 2020;22:842–55.
pubmed: 32514071
pmcid: 7899185
doi: 10.1038/s41556-020-0529-5
Birbach A, Eisenbarth D, Kozakowski N, Ladenhauf E, Schmidt-Supprian M, Schmid JA. Persistent inflammation leads to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model. Neoplasia. 2011;13:692–703.
pubmed: 21847361
pmcid: 3156660
doi: 10.1593/neo.11524
Behrens A, Sibilia M, David J-P, Möhle-Steinlein U, Tronche F, Schütz G, Wagner EF. Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO J. 2002;21:1782–90.
pubmed: 11927562
pmcid: 125360
doi: 10.1093/emboj/21.7.1782
Suzuki A, Yamaguchi MT, Ohteki T, et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity. 2001. https://doi.org/10.1016/S1074-7613(01)00134-0 .
doi: 10.1016/S1074-7613(01)00134-0
pubmed: 11371355
Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ, Sangiorgi FO, Maxson RE, Sucov HM, Roy-Burman P. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev. 2001;101:61–9.
pubmed: 11231059
doi: 10.1016/S0925-4773(00)00551-7
Oberhuber M, Pecoraro M, Rusz M, et al. STAT 3 ‐dependent analysis reveals PDK 4 as independent predictor of recurrence in prostate cancer. Mol Syst Biol. 2020;16(4):e9247. https://doi.org/10.15252/msb.20199247 .
doi: 10.15252/msb.20199247
pubmed: 32323921
pmcid: 7178451
Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-17204-5 .
doi: 10.1038/s41598-017-17204-5
pubmed: 29203879
pmcid: 5715110
Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-convex Polygons. 2018. https://doi.org/10.1007/978-3-030-00934-2_30 .
doi: 10.1007/978-3-030-00934-2_30
Ding Z, Wu CJ, Chu GC, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011. https://doi.org/10.1038/nature09677 .
doi: 10.1038/nature09677
pubmed: 22158122
pmcid: 3170097
Limberger T, Schlederer M, Trachtová K, et al. KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis. Mol Cancer. 2022;21:89.
pubmed: 35354467
pmcid: 8966196
doi: 10.1186/s12943-022-01542-8
Cancer Genome Atlas Research Network TCGAR. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163:1011–25.
doi: 10.1016/j.cell.2015.10.025
Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol. 2004. https://doi.org/10.1038/modpathol.3800054 .
doi: 10.1038/modpathol.3800054
pubmed: 14976540
Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.
pubmed: 20579941
pmcid: 3198787
doi: 10.1016/j.ccr.2010.05.026
Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Peña JG, Treviño V. SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis. PLoS ONE. 2013;8:1–9.
doi: 10.1371/journal.pone.0074250
Yu YP, Landsittel D, Jing L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004. https://doi.org/10.1200/JCO.2004.05.158 .
doi: 10.1200/JCO.2004.05.158
pubmed: 15514374
Bolis M, Bossi D, Vallerga A, et al. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat Commun. 2021;12:7033.
pubmed: 34857732
pmcid: 8640014
doi: 10.1038/s41467-021-26840-5
Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.
pubmed: 14522255
doi: 10.1016/S1535-6108(03)00215-0
Tannenbaum J, Bennett BT. Russell and Burch’s 3Rs then and now: The need for clarity in definition and purpose. J Am Assoc Lab Anim Sci. 2015;54:120–32.
pubmed: 25836957
pmcid: 4382615
Saul D, Kosinsky RL, Atkinson EJ, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-32552-1 .
doi: 10.1038/s41467-022-32552-1
pubmed: 35974106
pmcid: 9381717
Guccini I, Revandkar A, D’Ambrosio M, et al. Senescence Reprogramming by TIMP1 Deficiency Promotes Prostate Cancer Metastasis. Cancer Cell. 2021;39:68-82.e9.
pubmed: 33186519
doi: 10.1016/j.ccell.2020.10.012
Nilsson K, Landberg G. Subcellular localization, modification and protein complex formation of the cdk-inhibitor p16 in Rb-functional and Rb-inactivated tumor cells. Int J Cancer. 2006;118:1120–5.
pubmed: 16161044
doi: 10.1002/ijc.21466
Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock REW, Brinkman FSL, Lynn DJ InnateDB: systems biology of innate immunity and beyond-recent updates and continuing curation. https://doi.org/10.1093/nar/gks1147
Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy, Asthma Clin Immunol. 2018;14:49.
pubmed: 30263032
doi: 10.1186/s13223-018-0278-1
Sionov RV, Fridlender ZG, Granot Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron. 2015. https://doi.org/10.1007/s12307-014-0147-5 .
doi: 10.1007/s12307-014-0147-5
pubmed: 24895166
Reichel CA, Puhr-Westerheide D, Zuchtriegel G, Uhl B, Berberich N, Zahler S, Wymann MP, Luckow B, Krombach F. C-C motif chemokine CCL3 and canonical neutrophil attractants promote neutrophil extravasation through common and distinct mechanisms. Blood. 2012. https://doi.org/10.1182/blood-2012-01-402164 .
doi: 10.1182/blood-2012-01-402164
pubmed: 22674804
Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol. 2020;17:433–50.
pubmed: 32238918
pmcid: 7192912
doi: 10.1038/s41423-020-0412-0
Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res. 1998;4(3):811–5.
pubmed: 9533551
Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and prognosis. Clin Sci. 2017;131(3):197–210. https://doi.org/10.1042/CS20160026 .
doi: 10.1042/CS20160026
Baker SJ, Reddy EP. Understanding the temporal sequence of genetic events that lead to prostate cancer progression and metastasis. Proc Natl Acad Sci U S A. 2013;110:14819–20.
pubmed: 23995446
pmcid: 3773772
doi: 10.1073/pnas.1313997110
Carver BS, Tran J, Gopalan A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009. https://doi.org/10.1038/ng.370 .
doi: 10.1038/ng.370
pubmed: 19396168
pmcid: 2898503
Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012. https://doi.org/10.1158/0008-5472.CAN-11-3132 .
doi: 10.1158/0008-5472.CAN-11-3132
pubmed: 22350410
pmcid: 3319847
Thakur N, Gudey SK, Marcusson A, Fu JY, Bergh A, Heldin CH, Landstrom̈ M,. TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell Cycle. 2014. https://doi.org/10.4161/cc.29339 .
doi: 10.4161/cc.29339
pubmed: 25483191
pmcid: 4128885
Udayappan UK, Casey PJ. c-Jun Contributes to Transcriptional Control of GNA12 Expression in Prostate Cancer Cells. Molecules. 2017. https://doi.org/10.3390/molecules22040612 .
doi: 10.3390/molecules22040612
pubmed: 28394299
pmcid: 6153990
Tillman K, Oberfield JL, Shen X-Q, Bubulya A, Shemshedini L. c-Fos Dimerization with c-Jun Represses c-Jun Enhancement of Androgen Receptor Transactivation. Endocrine. 1998;9:193–200.
pubmed: 9867253
doi: 10.1385/ENDO:9:2:193
Chen S-Y, Cai C, Fisher CJ, Zheng Z, Omwancha J, Hsieh C-L, Shemshedini L. c-Jun enhancement of androgen receptor transactivation is associated with prostate cancer cell proliferation. Oncogene. 2006;25:7212–23.
pubmed: 16732317
doi: 10.1038/sj.onc.1209705
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
pubmed: 21376230
doi: 10.1016/j.cell.2011.02.013
Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218:1402–10.
pubmed: 23891329
doi: 10.1016/j.imbio.2013.06.003
Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.
pubmed: 20371344
pmcid: 4994190
doi: 10.1016/j.cell.2010.03.014
Sun B, Qin W, Song M, Liu L, Yu Y, Qi X, Sun H. Neutrophil Suppresses Tumor Cell Proliferation via Fas /Fas Ligand Pathway Mediated Cell Cycle Arrested. Int J Biol Sci. 2018;14:2103–13.
pubmed: 30585273
pmcid: 6299367
doi: 10.7150/ijbs.29297
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–60.
pubmed: 17251933
pmcid: 4601097
doi: 10.1038/nature05529
Takasugi M, Yoshida Y, Ohtani N. Cellular senescence and the tumour microenvironment. Mol Oncol. 2022;16:3333–51.
pubmed: 35674109
pmcid: 9490140
doi: 10.1002/1878-0261.13268
Riedel M, Berthelsen MF, Cai H, et al. In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene. 2021;40:2437–47.
pubmed: 33674748
pmcid: 7610543
doi: 10.1038/s41388-021-01724-6
Tasdemir N, Banito A, Roe J-S, et al. BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. Cancer Discov. 2016;6:612–29.
pubmed: 27099234
pmcid: 4893996
doi: 10.1158/2159-8290.CD-16-0217
Muñoz-Espín D, Serrano M. Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.
pubmed: 24954210
doi: 10.1038/nrm3823
Alexander E, Hildebrand DG, Kriebs A, Obermayer K, Manz M, Rothfuss O, Essmann F, Schulze-Osthoff K. IκBζ is a regulator for the senescence-associated secretory phenotype in DNA damage- and oncogene-induced senescence. J Cell Sci. 2013;126:3738–45.
pubmed: 23781024
Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010. https://doi.org/10.1016/j.molmed.2010.03.003 .
doi: 10.1016/j.molmed.2010.03.003
pubmed: 20444648
pmcid: 2879478
Lotfi N, Thome R, Rezaei N, Zhang G-X, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol. 2019;10: 452989.
doi: 10.3389/fimmu.2019.01265
Mausberg AK, Jander S, Reichmann G. Intracerebral granulocyte-macrophage colony-stimulating factor induces functionally competent dendritic cells in the mouse brain. Glia. 2009;57:1341–50.
pubmed: 19229994
doi: 10.1002/glia.20853
Luo Y, Hitz BC, Gabdank I, et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 2020;48:D882–9.
pubmed: 31713622
doi: 10.1093/nar/gkz1062
Durant L, Watford WT, Ramos HL, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32:605–15.
pubmed: 20493732
pmcid: 3148263
doi: 10.1016/j.immuni.2010.05.003
Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, Ferbeyre G. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK / NF -κ B activation. Aging Cell. 2013;12:489–98.
pubmed: 23521863
doi: 10.1111/acel.12075