JUN mediates the senescence associated secretory phenotype and immune cell recruitment to prevent prostate cancer progression.


Journal

Molecular cancer
ISSN: 1476-4598
Titre abrégé: Mol Cancer
Pays: England
ID NLM: 101147698

Informations de publication

Date de publication:
29 May 2024
Historique:
received: 29 11 2023
accepted: 10 05 2024
medline: 30 5 2024
pubmed: 30 5 2024
entrez: 29 5 2024
Statut: epublish

Résumé

Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1β production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1β and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1β, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.

Sections du résumé

BACKGROUND BACKGROUND
Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood.
METHODS METHODS
We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment.
RESULTS RESULTS
Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1β production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1β and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1β, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth.
CONCLUSIONS CONCLUSIONS
Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.

Identifiants

pubmed: 38811984
doi: 10.1186/s12943-024-02022-x
pii: 10.1186/s12943-024-02022-x
doi:

Substances chimiques

PTEN Phosphohydrolase EC 3.1.3.67
Proto-Oncogene Proteins c-jun 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

114

Subventions

Organisme : Next Generation EU
ID : LX22NPO5102
Organisme : Österreichische Forschungsförderungsgesellschaft
ID : COMET

Informations de copyright

© 2024. The Author(s).

Références

Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A, Stattin P, Van Poppel H, La Vecchia C. Epidemiology and Prevention of Prostate Cancer. Eur Urol Oncol. 2021;4:877–92.
pubmed: 34716119 doi: 10.1016/j.euo.2021.09.006
Berenguer CV, Pereira F, Câmara JS, Pereira JAM. Underlying Features of Prostate Cancer-Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Curr Oncol. 2023;30:2300–21.
pubmed: 36826139 pmcid: 9955741 doi: 10.3390/curroncol30020178
Tan ME, Li J, Xu HE, Melcher K, Yong E. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 2015;36:3–23.
pubmed: 24909511 doi: 10.1038/aps.2014.18
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;4:222–34.
doi: 10.1038/nrurol.2018.9
Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34–45.
pubmed: 11900250 doi: 10.1038/35094009
Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–30.
pubmed: 16079851 pmcid: 1939938 doi: 10.1038/nature03918
Jung SH, Hwang HJ, Kang D, Park HA, Lee HC, Jeong D, Lee K, Park HJ, Ko YG, Lee JS. mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene. 2019;38:1639–50.
pubmed: 30337688 doi: 10.1038/s41388-018-0521-8
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179:813–27.
pubmed: 31675495 doi: 10.1016/j.cell.2019.10.005
Schosserer M, Grillari J, Breitenbach M. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy. Front Oncol. 2017;7: 315584.
doi: 10.3389/fonc.2017.00278
Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.
pubmed: 20078217 pmcid: 4166495 doi: 10.1146/annurev-pathol-121808-102144
Culig Z, Puhr M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol Cell Endocrinol. 2018;462:25–30.
pubmed: 28315704 doi: 10.1016/j.mce.2017.03.012
Pencik J, Schlederer M, Gruber W, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736.
pubmed: 26198641 doi: 10.1038/ncomms8736
Pencik J, Philippe C, Schlederer M, et al. STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway. Mol Cancer. 2023;22:133.
pubmed: 37573301 pmcid: 10422794 doi: 10.1186/s12943-023-01825-8
Ouyang X, Jessen WJ, Al-Ahmadie H, et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 2008. https://doi.org/10.1158/0008-5472.CAN-07-6055 .
doi: 10.1158/0008-5472.CAN-07-6055 pubmed: 18381418
Vogt PK. Fortuitous convergences: the beginnings of JUN. Nat Rev Cancer. 2002;2:465–9.
pubmed: 12189388 doi: 10.1038/nrc818
Lopez-Bergami P, Lau E, Ronai Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer. 2010;10:65–76.
pubmed: 20029425 pmcid: 2874064 doi: 10.1038/nrc2681
Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3:859–68.
pubmed: 14668816 doi: 10.1038/nrc1209
Cai C, Hsieh CL, Shemshedini L. c-Jun has multiple enhancing activities in the novel cross talk between the androgen receptor and Ets variant gene 1 in prostate cancer. Mol Cancer Res. 2007;5:725–35.
pubmed: 17634427 doi: 10.1158/1541-7786.MCR-06-0430
Bubulya A, Chen SY, Fisher C, Zheng Z, Shen X, Shemshedini L. c-Jun Potentiates the Functional Interaction between the Amino and Carboxyl Termini of the Androgen Receptor. J Biol Chem. 2001;276:44704–11.
pubmed: 11577103 doi: 10.1074/jbc.M107346200
Shaulian E. AP-1 - The Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22:894–9.
pubmed: 20060892 doi: 10.1016/j.cellsig.2009.12.008
Hübner A, Mulholland DJ, Standen CL, et al. JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proc Natl Acad Sci. 2012;109(30):12046 LP – 12051.
doi: 10.1073/pnas.1209660109
Thomsen MK, Bakiri L, Hasenfuss SC, Wu H, Morente M, Wagner EF. Loss of JUNB/AP-1 promotes invasive prostate cancer. Cell Death Differ. 2015;22:574–82.
pubmed: 25526087 doi: 10.1038/cdd.2014.213
Martínez-Zamudio RI, Roux P-F, de Freitas JANLF, et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol. 2020;22:842–55.
pubmed: 32514071 pmcid: 7899185 doi: 10.1038/s41556-020-0529-5
Birbach A, Eisenbarth D, Kozakowski N, Ladenhauf E, Schmidt-Supprian M, Schmid JA. Persistent inflammation leads to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model. Neoplasia. 2011;13:692–703.
pubmed: 21847361 pmcid: 3156660 doi: 10.1593/neo.11524
Behrens A, Sibilia M, David J-P, Möhle-Steinlein U, Tronche F, Schütz G, Wagner EF. Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO J. 2002;21:1782–90.
pubmed: 11927562 pmcid: 125360 doi: 10.1093/emboj/21.7.1782
Suzuki A, Yamaguchi MT, Ohteki T, et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity. 2001. https://doi.org/10.1016/S1074-7613(01)00134-0 .
doi: 10.1016/S1074-7613(01)00134-0 pubmed: 11371355
Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ, Sangiorgi FO, Maxson RE, Sucov HM, Roy-Burman P. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev. 2001;101:61–9.
pubmed: 11231059 doi: 10.1016/S0925-4773(00)00551-7
Oberhuber M, Pecoraro M, Rusz M, et al. STAT 3 ‐dependent analysis reveals PDK 4 as independent predictor of recurrence in prostate cancer. Mol Syst Biol. 2020;16(4):e9247. https://doi.org/10.15252/msb.20199247 .
doi: 10.15252/msb.20199247 pubmed: 32323921 pmcid: 7178451
Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-17204-5 .
doi: 10.1038/s41598-017-17204-5 pubmed: 29203879 pmcid: 5715110
Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-convex Polygons. 2018. https://doi.org/10.1007/978-3-030-00934-2_30 .
doi: 10.1007/978-3-030-00934-2_30
Ding Z, Wu CJ, Chu GC, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011. https://doi.org/10.1038/nature09677 .
doi: 10.1038/nature09677 pubmed: 22158122 pmcid: 3170097
Limberger T, Schlederer M, Trachtová K, et al. KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis. Mol Cancer. 2022;21:89.
pubmed: 35354467 pmcid: 8966196 doi: 10.1186/s12943-022-01542-8
Cancer Genome Atlas Research Network TCGAR. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163:1011–25.
doi: 10.1016/j.cell.2015.10.025
Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol. 2004. https://doi.org/10.1038/modpathol.3800054 .
doi: 10.1038/modpathol.3800054 pubmed: 14976540
Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.
pubmed: 20579941 pmcid: 3198787 doi: 10.1016/j.ccr.2010.05.026
Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Peña JG, Treviño V. SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis. PLoS ONE. 2013;8:1–9.
doi: 10.1371/journal.pone.0074250
Yu YP, Landsittel D, Jing L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004. https://doi.org/10.1200/JCO.2004.05.158 .
doi: 10.1200/JCO.2004.05.158 pubmed: 15514374
Bolis M, Bossi D, Vallerga A, et al. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat Commun. 2021;12:7033.
pubmed: 34857732 pmcid: 8640014 doi: 10.1038/s41467-021-26840-5
Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.
pubmed: 14522255 doi: 10.1016/S1535-6108(03)00215-0
Tannenbaum J, Bennett BT. Russell and Burch’s 3Rs then and now: The need for clarity in definition and purpose. J Am Assoc Lab Anim Sci. 2015;54:120–32.
pubmed: 25836957 pmcid: 4382615
Saul D, Kosinsky RL, Atkinson EJ, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-32552-1 .
doi: 10.1038/s41467-022-32552-1 pubmed: 35974106 pmcid: 9381717
Guccini I, Revandkar A, D’Ambrosio M, et al. Senescence Reprogramming by TIMP1 Deficiency Promotes Prostate Cancer Metastasis. Cancer Cell. 2021;39:68-82.e9.
pubmed: 33186519 doi: 10.1016/j.ccell.2020.10.012
Nilsson K, Landberg G. Subcellular localization, modification and protein complex formation of the cdk-inhibitor p16 in Rb-functional and Rb-inactivated tumor cells. Int J Cancer. 2006;118:1120–5.
pubmed: 16161044 doi: 10.1002/ijc.21466
Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock REW, Brinkman FSL, Lynn DJ InnateDB: systems biology of innate immunity and beyond-recent updates and continuing curation. https://doi.org/10.1093/nar/gks1147
Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy, Asthma Clin Immunol. 2018;14:49.
pubmed: 30263032 doi: 10.1186/s13223-018-0278-1
Sionov RV, Fridlender ZG, Granot Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron. 2015. https://doi.org/10.1007/s12307-014-0147-5 .
doi: 10.1007/s12307-014-0147-5 pubmed: 24895166
Reichel CA, Puhr-Westerheide D, Zuchtriegel G, Uhl B, Berberich N, Zahler S, Wymann MP, Luckow B, Krombach F. C-C motif chemokine CCL3 and canonical neutrophil attractants promote neutrophil extravasation through common and distinct mechanisms. Blood. 2012. https://doi.org/10.1182/blood-2012-01-402164 .
doi: 10.1182/blood-2012-01-402164 pubmed: 22674804
Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol. 2020;17:433–50.
pubmed: 32238918 pmcid: 7192912 doi: 10.1038/s41423-020-0412-0
Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res. 1998;4(3):811–5.
pubmed: 9533551
Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and prognosis. Clin Sci. 2017;131(3):197–210. https://doi.org/10.1042/CS20160026 .
doi: 10.1042/CS20160026
Baker SJ, Reddy EP. Understanding the temporal sequence of genetic events that lead to prostate cancer progression and metastasis. Proc Natl Acad Sci U S A. 2013;110:14819–20.
pubmed: 23995446 pmcid: 3773772 doi: 10.1073/pnas.1313997110
Carver BS, Tran J, Gopalan A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009. https://doi.org/10.1038/ng.370 .
doi: 10.1038/ng.370 pubmed: 19396168 pmcid: 2898503
Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012. https://doi.org/10.1158/0008-5472.CAN-11-3132 .
doi: 10.1158/0008-5472.CAN-11-3132 pubmed: 22350410 pmcid: 3319847
Thakur N, Gudey SK, Marcusson A, Fu JY, Bergh A, Heldin CH, Landstrom̈ M,. TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell Cycle. 2014. https://doi.org/10.4161/cc.29339 .
doi: 10.4161/cc.29339 pubmed: 25483191 pmcid: 4128885
Udayappan UK, Casey PJ. c-Jun Contributes to Transcriptional Control of GNA12 Expression in Prostate Cancer Cells. Molecules. 2017. https://doi.org/10.3390/molecules22040612 .
doi: 10.3390/molecules22040612 pubmed: 28394299 pmcid: 6153990
Tillman K, Oberfield JL, Shen X-Q, Bubulya A, Shemshedini L. c-Fos Dimerization with c-Jun Represses c-Jun Enhancement of Androgen Receptor Transactivation. Endocrine. 1998;9:193–200.
pubmed: 9867253 doi: 10.1385/ENDO:9:2:193
Chen S-Y, Cai C, Fisher CJ, Zheng Z, Omwancha J, Hsieh C-L, Shemshedini L. c-Jun enhancement of androgen receptor transactivation is associated with prostate cancer cell proliferation. Oncogene. 2006;25:7212–23.
pubmed: 16732317 doi: 10.1038/sj.onc.1209705
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218:1402–10.
pubmed: 23891329 doi: 10.1016/j.imbio.2013.06.003
Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.
pubmed: 20371344 pmcid: 4994190 doi: 10.1016/j.cell.2010.03.014
Sun B, Qin W, Song M, Liu L, Yu Y, Qi X, Sun H. Neutrophil Suppresses Tumor Cell Proliferation via Fas /Fas Ligand Pathway Mediated Cell Cycle Arrested. Int J Biol Sci. 2018;14:2103–13.
pubmed: 30585273 pmcid: 6299367 doi: 10.7150/ijbs.29297
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–60.
pubmed: 17251933 pmcid: 4601097 doi: 10.1038/nature05529
Takasugi M, Yoshida Y, Ohtani N. Cellular senescence and the tumour microenvironment. Mol Oncol. 2022;16:3333–51.
pubmed: 35674109 pmcid: 9490140 doi: 10.1002/1878-0261.13268
Riedel M, Berthelsen MF, Cai H, et al. In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene. 2021;40:2437–47.
pubmed: 33674748 pmcid: 7610543 doi: 10.1038/s41388-021-01724-6
Tasdemir N, Banito A, Roe J-S, et al. BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. Cancer Discov. 2016;6:612–29.
pubmed: 27099234 pmcid: 4893996 doi: 10.1158/2159-8290.CD-16-0217
Muñoz-Espín D, Serrano M. Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.
pubmed: 24954210 doi: 10.1038/nrm3823
Alexander E, Hildebrand DG, Kriebs A, Obermayer K, Manz M, Rothfuss O, Essmann F, Schulze-Osthoff K. IκBζ is a regulator for the senescence-associated secretory phenotype in DNA damage- and oncogene-induced senescence. J Cell Sci. 2013;126:3738–45.
pubmed: 23781024
Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010. https://doi.org/10.1016/j.molmed.2010.03.003 .
doi: 10.1016/j.molmed.2010.03.003 pubmed: 20444648 pmcid: 2879478
Lotfi N, Thome R, Rezaei N, Zhang G-X, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol. 2019;10: 452989.
doi: 10.3389/fimmu.2019.01265
Mausberg AK, Jander S, Reichmann G. Intracerebral granulocyte-macrophage colony-stimulating factor induces functionally competent dendritic cells in the mouse brain. Glia. 2009;57:1341–50.
pubmed: 19229994 doi: 10.1002/glia.20853
Luo Y, Hitz BC, Gabdank I, et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 2020;48:D882–9.
pubmed: 31713622 doi: 10.1093/nar/gkz1062
Durant L, Watford WT, Ramos HL, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32:605–15.
pubmed: 20493732 pmcid: 3148263 doi: 10.1016/j.immuni.2010.05.003
Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, Ferbeyre G. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK / NF -κ B activation. Aging Cell. 2013;12:489–98.
pubmed: 23521863 doi: 10.1111/acel.12075

Auteurs

Torben Redmer (T)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria. torben.redmer@vetmeduni.ac.at.

Martin Raigel (M)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria.

Christina Sternberg (C)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
Biochemical Institute, University of Kiel, Kiel, 24098, Germany.

Roman Ziegler (R)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
Department of Cell Biology, Charles University, Prague, Czech Republic and Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czech Republic.

Clara Probst (C)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria.

Desiree Lindner (D)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria.

Astrid Aufinger (A)

Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.

Tanja Limberger (T)

Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
Center for Biomarker Research in Medicine (CBmed) Vienna, Core-Lab2, Medical University of Vienna, Vienna, 1090, Austria.

Karolina Trachtova (K)

Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria.
CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.

Petra Kodajova (P)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.

Sandra Högler (S)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.

Michaela Schlederer (M)

Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.

Stefan Stoiber (S)

Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria.
Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, 1090, Austria.

Monika Oberhuber (M)

Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria.

Marco Bolis (M)

Institute of Oncology Research, Bellinzona and Faculty of Biomedical Sciences, USI, Lugano, 6500, TI, Switzerland.
Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, 20156, Italy.
Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, 6500, TI, Switzerland.

Heidi A Neubauer (HA)

Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.

Sara Miranda (S)

Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.

Martina Tomberger (M)

Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria.

Nora S Harbusch (NS)

Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria.

Ines Garces de Los Fayos Alonso (I)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.

Felix Sternberg (F)

Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, 1090, Austria.

Richard Moriggl (R)

Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria.

Jean-Philippe Theurillat (JP)

Institute of Oncology Research, Bellinzona and Faculty of Biomedical Sciences, USI, Lugano, 6500, TI, Switzerland.

Boris Tichy (B)

CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.

Vojtech Bystry (V)

CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.

Jenny L Persson (JL)

Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden.
Department of Biomedical Sciences, Malmö Universitet, Malmö, 206 06, Sweden.

Stephan Mathas (S)

Charité-Universitätsmedizin Berlin, Hematology, Oncology and Tumor Immunology, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117, Germany.
Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Group Biology of Malignant Lymphomas, Berlin, 13125, Germany.
Experimental and Clinical Research Center (ECRC), a cooperation between the MDC and the Charité, Berlin, Germany.

Fritz Aberger (F)

Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria.

Birgit Strobl (B)

Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.

Sarka Pospisilova (S)

CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.

Olaf Merkel (O)

Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.

Gerda Egger (G)

Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.

Sabine Lagger (S)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria. sabine.lagger@vetmeduni.ac.at.

Lukas Kenner (L)

Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria. lukas.kenner@meduniwien.ac.at.
Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria. lukas.kenner@meduniwien.ac.at.
Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, 1090, Austria. lukas.kenner@meduniwien.ac.at.
Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria. lukas.kenner@meduniwien.ac.at.
Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria. lukas.kenner@meduniwien.ac.at.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH