Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways.
Animals
Humans
Oncolytic Virotherapy
/ methods
Succinates
/ pharmacology
Mice
Cell Line, Tumor
Oncolytic Viruses
Interferon Type I
/ metabolism
NF-E2-Related Factor 2
/ metabolism
Colonic Neoplasms
/ therapy
Antiviral Agents
/ pharmacology
NF-kappa B
/ metabolism
I-kappa B Kinase
/ metabolism
Kelch-Like ECH-Associated Protein 1
/ metabolism
Inflammation
/ drug therapy
Female
Vesicular stomatitis Indiana virus
/ physiology
Signal Transduction
/ drug effects
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 May 2024
15 May 2024
Historique:
received:
07
06
2023
accepted:
23
04
2024
medline:
16
5
2024
pubmed:
16
5
2024
entrez:
15
5
2024
Statut:
epublish
Résumé
The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.
Identifiants
pubmed: 38750019
doi: 10.1038/s41467-024-48422-x
pii: 10.1038/s41467-024-48422-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4096Subventions
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R335-2019-2138
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R325-2019-1490
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R307-2018-3667
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R325-2019-1490
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF22OC0079512
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19OC0054782
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF19OC0056043
Organisme : Kræftens Bekæmpelse (Danish Cancer Society)
ID : R279-A16218
Organisme : Kræftens Bekæmpelse (Danish Cancer Society)
ID : R306-A18092
Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF164
Organisme : Det Frie Forskningsråd (Danish Council for Independent Research)
ID : 1026-00003B
Organisme : Det Frie Forskningsråd (Danish Council for Independent Research)
ID : DFF-37741
Organisme : Det Frie Forskningsråd (Danish Council for Independent Research)
ID : 9039-00307B
Organisme : Carlsbergfondet (Carlsberg Foundation)
ID : CF19-0687
Organisme : Cancer Research UK (CRUK)
ID : C52419/A22869
Organisme : Dansk Kræftforsknings Fond (Danish Cancer Research Fund)
ID : R295-A16770
Organisme : Associazione Italiana di Oncologia Medica (Italian Association of Medical Oncology)
ID : IG-2019-22891
Organisme : KWF Kankerbestrijding (Dutch Cancer Society)
ID : 11056
Organisme : Hessisches Ministerium für Wissenschaft und Kunst (Hessen State Ministry of Higher Education, Research and the Arts)
ID : III L 5 - 519/03/03.001 - (0015)
Informations de copyright
© 2024. The Author(s).
Références
Swift, S. L. & Stojdl, D. F. Big data offers novel insights for oncolytic virus immunotherapy. Viruses 8, 45 (2016).
pubmed: 26861383
pmcid: 4776200
doi: 10.3390/v8020045
Macedo, N., Miller, D. M., Haq, R. & Kaufman, H. L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer 8, e001486 (2020).
pubmed: 33046622
pmcid: 7552841
doi: 10.1136/jitc-2020-001486
Cook, M. & Chauhan, A. Clinical application of oncolytic viruses: a systematic review. Int. J. Mol. Sci. 21, 7505 (2020).
pubmed: 33053757
pmcid: 7589713
doi: 10.3390/ijms21207505
Pol, J. G., Workenhe, S. T., Konda, P., Gujar, S. & Kroemer, G. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 4–27 (2020).
pubmed: 33183957
doi: 10.1016/j.cytogfr.2020.10.007
Twumasi-Boateng, K., Pettigrew, J. L., Kwok, Y. Y. E., Bell, J. C. & Nelson, B. H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 18, 419–432 (2018).
pubmed: 29695749
doi: 10.1038/s41568-018-0009-4
Engeland, C. E. & Bell, J. C. Introduction to oncolytic virotherapy. Methods Mol. Biol. 2058, 1–6 (2020).
pubmed: 31486028
doi: 10.1007/978-1-4939-9794-7_1
Lichty, B. D., Breitbach, C. J., Stojdl, D. F. & Bell, J. C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 14, 559–567 (2014).
pubmed: 24990523
doi: 10.1038/nrc3770
Rehman, H., Silk, A. W., Kane, M. P. & Kaufman, H. L. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. Immunother. Cancer 4, 53 (2016).
pubmed: 27660707
pmcid: 5029010
doi: 10.1186/s40425-016-0158-5
Todo, T. et al. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat. Med. 28, 1630–1639 (2022).
pubmed: 35864254
pmcid: 9388376
doi: 10.1038/s41591-022-01897-x
Liikanen, I. et al. Induction of interferon pathways mediates in vivo resistance to oncolytic adenovirus. Mol. Ther. 19, 1858–1866 (2011).
pubmed: 21792178
pmcid: 3188743
doi: 10.1038/mt.2011.144
Liu, Y. P., Suksanpaisan, L., Steele, M. B., Russell, S. J. & Peng, K. W. Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Sci. Rep. 3, 2375 (2013).
pubmed: 23921465
pmcid: 3736178
doi: 10.1038/srep02375
Russell, S. J., Peng, K. W. & Bell, J. C. Oncolytic virotherapy. Nat. Biotechnol. 30, 658–670 (2012).
pubmed: 22781695
pmcid: 3888062
doi: 10.1038/nbt.2287
Fulci, G. et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl Acad. Sci. USA 103, 12873–12878 (2006).
pubmed: 16908838
pmcid: 1568940
doi: 10.1073/pnas.0605496103
Hasegawa, N. et al. Cyclophosphamide enhances antitumor efficacy of oncolytic adenovirus expressing uracil phosphoribosyltransferase (UPRT) in immunocompetent Syrian hamsters. Int. J. Cancer 133, 1479–1488 (2013).
pubmed: 23444104
doi: 10.1002/ijc.28132
Alain, T. et al. Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc. Natl Acad. Sci. USA 107, 1576–1581 (2010).
pubmed: 20080710
pmcid: 2824402
doi: 10.1073/pnas.0912344107
Nguyen, T. L. et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc. Natl Acad. Sci. USA 105, 14981–14986 (2008).
pubmed: 18815361
pmcid: 2567479
doi: 10.1073/pnas.0803988105
Arulanandam, R. et al. Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nat. Commun. 6, 6410 (2015).
pubmed: 25817275
doi: 10.1038/ncomms7410
Zakaria, C. et al. Active-site mTOR inhibitors augment HSV1-dICP0 infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathog. 14, e1007264 (2018).
pubmed: 30138450
pmcid: 6124814
doi: 10.1371/journal.ppat.1007264
Wong, B. et al. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, sensitizes cancer cells to VSVDelta51 oncolytic virotherapy. Mol. Ther. 31, 3176–3192 (2023).
pubmed: 37766429
doi: 10.1016/j.ymthe.2023.09.017
Olagnier, D. et al. Activation of Nrf2 signaling augments vesicular stomatitis virus oncolysis via autophagy-driven suppression of antiviral immunity. Mol. Ther. 25, 1900–1916 (2017).
pubmed: 28527723
pmcid: 5542709
doi: 10.1016/j.ymthe.2017.04.022
Selman, M. et al. Dimethyl fumarate potentiates oncolytic virotherapy through NF-kappaB inhibition. Sci. Transl. Med. 10, eaao1613 (2018).
pubmed: 29367345
doi: 10.1126/scitranslmed.aao1613
Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature 556, 501–504 (2018).
pubmed: 29670287
pmcid: 6037913
doi: 10.1038/s41586-018-0052-z
Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).
pubmed: 29590092
pmcid: 6047741
doi: 10.1038/nature25986
Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).
pubmed: 27374498
pmcid: 5108454
doi: 10.1016/j.cmet.2016.06.004
Olagnier, D. et al. Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat. Commun. 9, 3506 (2018).
pubmed: 30158636
pmcid: 6115435
doi: 10.1038/s41467-018-05861-7
He, W. et al. Mesaconate is synthesized from itaconate and exerts immunomodulatory effects in macrophages. Nat. Metab. 4, 524–533 (2022).
pubmed: 35655024
pmcid: 9744384
doi: 10.1038/s42255-022-00565-1
Chen, F. et al. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat. Metab. 4, 534–546 (2022).
pubmed: 35655026
pmcid: 9170585
doi: 10.1038/s42255-022-00577-x
Swain, A. et al. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nat. Metab. 2, 594–602 (2020).
pubmed: 32694786
pmcid: 7378276
doi: 10.1038/s42255-020-0210-0
Runtsch, M. C. et al. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab. 34, 487–501.e488 (2022).
pubmed: 35235776
doi: 10.1016/j.cmet.2022.02.002
Hooftman, A. et al. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 32, 468–478.e467 (2020).
pubmed: 32791101
pmcid: 7422798
doi: 10.1016/j.cmet.2020.07.016
Bambouskova, M. et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep. 34, 108756 (2021).
pubmed: 33691097
pmcid: 8039864
doi: 10.1016/j.celrep.2021.108756
Li, W. et al. 4-octyl itaconate as a metabolite derivative inhibits inflammation via alkylation of STING. Cell Rep. 42, 112145 (2023).
pubmed: 36862550
doi: 10.1016/j.celrep.2023.112145
Su, C., Cheng, T., Huang, J., Zhang, T. & Yin, H. 4-Octyl itaconate restricts STING activation by blocking its palmitoylation. Cell Rep. 42, 113040 (2023).
pubmed: 37624697
doi: 10.1016/j.celrep.2023.113040
Olagnier, D. et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun. 11, 4938 (2020).
pubmed: 33009401
pmcid: 7532469
doi: 10.1038/s41467-020-18764-3
Ribo-Molina, P. et al. 4-Octyl itaconate reduces influenza A replication by targeting the nuclear export protein CRM1. J. Virol. 97, e0132523 (2023).
pubmed: 37823646
doi: 10.1128/jvi.01325-23
Waqas, F. H. et al. NRF2 activators inhibit influenza A virus replication by interfering with nucleo-cytoplasmic export of viral RNPs in an NRF2-independent manner. PLoS Pathog. 19, e1011506 (2023).
pubmed: 37459366
pmcid: 10374058
doi: 10.1371/journal.ppat.1011506
Sohail, A. et al. Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog. 18, e1010219 (2022).
pubmed: 35025971
pmcid: 8846506
doi: 10.1371/journal.ppat.1010219
Carter, M. E. et al. A three-dimensional organoid model of primary breast cancer to investigate the effects of oncolytic virotherapy. Front. Mol. Biosci. 9, 826302 (2022).
pubmed: 35223990
pmcid: 8874275
doi: 10.3389/fmolb.2022.826302
Raimondi, G. et al. Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine 56, 102786 (2020).
pubmed: 32460166
pmcid: 7251378
doi: 10.1016/j.ebiom.2020.102786
Farin, H. F. et al. Colorectal cancer organoid-stroma biobank allows subtype-specific assessment of individualized therapy responses. Cancer Discov. 13, 2192–2211 (2023).
pubmed: 37489084
pmcid: 10551667
doi: 10.1158/2159-8290.CD-23-0050
Louth, E. L., Jorgensen, R. L., Korshoej, A. R., Sorensen, J. C. H. & Capogna, M. Dopaminergic neuromodulation of spike timing dependent plasticity in mature adult rodent and human cortical neurons. Front. Cell Neurosci. 15, 668980 (2021).
pubmed: 33967700
pmcid: 8102156
doi: 10.3389/fncel.2021.668980
Qin, W. et al. Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages. J. Am. Chem. Soc. 142, 10894–10898 (2020).
pubmed: 32496768
doi: 10.1021/jacs.9b11962
Taguchi, K. & Yamamoto, M. The KEAP1-NRF2 system as a molecular target of cancer treatment. Cancers 13, 46 (2020).
pubmed: 33375248
pmcid: 7795874
doi: 10.3390/cancers13010046
He, F., Antonucci, L. & Karin, M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 41, 405–416 (2020).
pubmed: 32347301
pmcid: 7298623
doi: 10.1093/carcin/bgaa039
Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013).
pubmed: 23589850
pmcid: 3645523
doi: 10.1073/pnas.1214441110
Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).
pubmed: 14585354
doi: 10.1016/S1535-6108(03)00241-1
Chiang, C. et al. Sequence-specific modifications enhance the broad-spectrum antiviral response activated by RIG-I agonists. J. Virol. 89, 8011–8025 (2015).
pubmed: 26018150
pmcid: 4505665
doi: 10.1128/JVI.00845-15
Beljanski, V. et al. Enhanced influenza virus-like particle vaccination with a structurally optimized RIG-I agonist as adjuvant. J. Virol. 89, 10612–10624 (2015).
pubmed: 26269188
pmcid: 4580177
doi: 10.1128/JVI.01526-15
Sato, Y., Fu, Y., Liu, H., Lee, M. Y. & Shaw, M. H. Tumor-immune profiling of CT-26 and Colon 26 syngeneic mouse models reveals mechanism of anti-PD-1 response. BMC Cancer 21, 1222 (2021).
pubmed: 34774008
pmcid: 8590766
doi: 10.1186/s12885-021-08974-3
McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).
pubmed: 25614319
pmcid: 7162685
doi: 10.1038/nri3787
Shulak, L. et al. Histone deacetylase inhibitors potentiate vesicular stomatitis virus oncolysis in prostate cancer cells by modulating NF-kappaB-dependent autophagy. J. Virol. 88, 2927–2940 (2014).
pubmed: 24371063
pmcid: 3958113
doi: 10.1128/JVI.03406-13
Liu, S. et al. Crystal structure of a human IkappaB kinase beta asymmetric dimer. J. Biol. Chem. 288, 22758–22767 (2013).
pubmed: 23792959
pmcid: 3829360
doi: 10.1074/jbc.M113.482596
Rushe, M. et al. Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure 16, 798–808 (2008).
pubmed: 18462684
doi: 10.1016/j.str.2008.02.012
Chen, L. L. et al. Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nat Cell Biol 24, 353–363 (2022).
pubmed: 35256775
pmcid: 9305987
doi: 10.1038/s41556-022-00853-8
Bhatt, D. K., Chammas, R. & Daemen, T. Resistance mechanisms influencing oncolytic virotherapy, a systematic analysis. Vaccines 9, 1166 (2021).
pubmed: 34696274
pmcid: 8537623
doi: 10.3390/vaccines9101166
Thimmulappa, R. K. et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984–995 (2006).
pubmed: 16585964
pmcid: 1421348
doi: 10.1172/JCI25790
Varble, A. J. et al. The vesicular stomatitis virus matrix protein inhibits NF-kappaB activation in mouse L929 cells. Virology 499, 99–104 (2016).
pubmed: 27643886
doi: 10.1016/j.virol.2016.09.009
Horner, S. M., Park, H. S. & Gale, M. Jr. Control of innate immune signaling and membrane targeting by the Hepatitis C virus NS3/4A protease are governed by the NS3 helix alpha0. J. Virol. 86, 3112–3120 (2012).
pubmed: 22238314
pmcid: 3302330
doi: 10.1128/JVI.06727-11
Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat. Immunol. 8, 592–600 (2007).
pubmed: 17468758
doi: 10.1038/ni1465
Wang, Q. et al. The anti-inflammatory drug dimethyl itaconate protects against colitis-associated colorectal cancer. J. Mol. Med. 98, 1457–1466 (2020).
pubmed: 32840638
doi: 10.1007/s00109-020-01963-2
Zhan, Z., Wang, Z., Bao, Y., Liu, W. & Hong, L. OI inhibits development of ovarian cancer by blocking crosstalk between cancer cells and macrophages via HIF-1alpha pathway. Biochem. Biophys. Res. Commun. 606, 142–148 (2022).
pubmed: 35358838
doi: 10.1016/j.bbrc.2022.03.106
Bhatt, D. K., Janzen, T., Daemen, T. & Weissing, F. J. Modelling the spatial dynamics of oncolytic virotherapy in the presence of virus-resistant tumour cells. PLoS Comput. Biol. 18, e1010076 (2022).
pubmed: 36473017
pmcid: 9767357
doi: 10.1371/journal.pcbi.1010076
Berg, D. R. et al. In vitro and in silico multidimensional modeling of oncolytic tumor virotherapy dynamics. PLoS Comput. Biol. 15, e1006773 (2019).
pubmed: 30835721
pmcid: 6400333
doi: 10.1371/journal.pcbi.1006773
Torrente, L. et al. Crosstalk between NRF2 and HIPK2 shapes cytoprotective responses. Oncogene 36, 6204–6212 (2017).
pubmed: 28692050
pmcid: 5641449
doi: 10.1038/onc.2017.221
van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).
pubmed: 25957691
pmcid: 6428276
doi: 10.1016/j.cell.2015.03.053
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191–2194 (2013).
doi: 10.1001/jama.2013.281053
Louis, D. N. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 23, 1231–1251 (2021).
pubmed: 34185076
pmcid: 8328013
doi: 10.1093/neuonc/noab106
Ting, J. T. et al. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci. Rep. 8, 8407 (2018).
pubmed: 29849137
pmcid: 5976666
doi: 10.1038/s41598-018-26803-9
Lee, B. R. et al. Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484 (2023).
pubmed: 37824669
doi: 10.1126/science.adf6484
Hoang, H. D. et al. Induction of an alternative mRNA 5’ leader enhances translation of the ciliopathy gene Inpp5e and resistance to oncolytic virus infection. Cell Rep. 29, 4010–4023.e4015 (2019).
pubmed: 31851930
doi: 10.1016/j.celrep.2019.11.072
Leber, M. F. et al. Sequencing of serially passaged measles virus affirms its genomic stability and reveals a nonrandom distribution of consensus mutations. J. Gen. Virol. 101, 399–409 (2020).
pubmed: 32053093
doi: 10.1099/jgv.0.001395
Schnalzger, T. E. et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 38, e100928 (2019).
pubmed: 31036555
pmcid: 6576164
doi: 10.15252/embj.2018100928
Groeneveldt, C. et al. Preconditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001191 (2020).
Belkina, A. C. et al. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat. Commun. 10, 5415 (2019).
pubmed: 31780669
pmcid: 6882880
doi: 10.1038/s41467-019-13055-y
Jeon, S. A. et al. Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing. Genom. Inform. 17, e32 (2019).
doi: 10.5808/GI.2019.17.3.e32
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol 33, 290–295 (2015).
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
Gearing, L. J. et al. CiiiDER: a tool for predicting and analysing transcription factor binding sites. PLoS ONE 14, e0215495 (2019).
pubmed: 31483836
pmcid: 6726224
doi: 10.1371/journal.pone.0215495
Rinschen, M. M. et al. VPS34-dependent control of apical membrane function of proximal tubule cells and nutrient recovery by the kidney. Sci. Signal 15, eabo7940 (2022).
pubmed: 36445937
pmcid: 10350314
doi: 10.1126/scisignal.abo7940
Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020).
pubmed: 28691345
doi: 10.1002/mas.21540
Harris et al. Array programming with NumPy. Nature 585, 357–362 (2020).
pubmed: 32939066
pmcid: 7759461
doi: 10.1038/s41586-020-2649-2