METTL3-mediated N6-methyladenosine exacerbates ferroptosis via m6A-IGF2BP2-dependent mitochondrial metabolic reprogramming in sepsis-induced acute lung injury.

N6-methylation ferroptosis metabolic reprogramming neutrophil extracellular traps sepsis-induced acute lung injury

Journal

Clinical and translational medicine
ISSN: 2001-1326
Titre abrégé: Clin Transl Med
Pays: United States
ID NLM: 101597971

Informations de publication

Date de publication:
09 2023
Historique:
revised: 13 08 2023
received: 10 03 2023
accepted: 18 08 2023
medline: 18 9 2023
pubmed: 16 9 2023
entrez: 16 9 2023
Statut: ppublish

Résumé

Neutrophil extracellular traps (NETs), released by polymorphonuclear neutrophils (PMNs), exert a robust antimicrobial function in infectious diseases such as sepsis. NETs also contribute to the pathogenesis and exacerbation of sepsis. Although the lung is highly vulnerable to infections, few studies have explored the role of NETs in sepsis-induced acute lung injury (SI-ALI). We demonstrate that NETs induce SI-ALI via enhanced ferroptosis in alveolar epithelial cells. Our findings reveal that the excessive release of NETs in patients and mice with SI-ALI is accompanied by upregulation of ferroptosis depending on METTL3-induced m6A modification of hypoxia-inducible factor-1α (HIF-1α) and subsequent mitochondrial metabolic reprogramming. In addition to conducting METTL3 overexpression and knockdown experiments in vitro, we also investigated the impact of ferroptosis on SI-ALI caused by NETs in a caecum ligation and puncture (CLP)-induced SI-ALI model using METTL3 condition knockout (CKO) mice and wild-type mice. Our results indicate the crucial role of NETs in the progression of SI-ALI via NET-activated METTL3 m6A-IGF2BP2-dependent m6A modification of HIF-1α, which further contributes to metabolic reprogramming and ferroptosis in alveolar epithelial cells.

Identifiants

pubmed: 37715457
doi: 10.1002/ctm2.1389
pmc: PMC10504453
doi:

Substances chimiques

Adenosine K72T3FS567

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1389

Informations de copyright

© 2023 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

Références

Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet. 2021;398:622-637. doi:10.1016/s0140-6736(21)00439-6
Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial. JAMA. 2020;324:1307-1316. doi:10.1001/jama.2020.17021
Karalapillai D, Weinberg L, Peyton P, et al. Effect of intraoperative low tidal volume vs conventional tidal volume on postoperative pulmonary complications in patients undergoing major surgery: a randomized clinical trial. JAMA. 2020;324:848-858. doi:10.1001/jama.2020.12866
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135:2033-2040. doi:10.1182/blood.2020006000
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5:18. doi:10.1038/s41572-019-0069-0
Solomon JJ, Heyman B, Ko JP, et al. CT of post-acute lung complications of COVID-19. Radiology. 2021;301:E383-E395. doi:10.1148/radiol.2021211396
Gorman EA, O'Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management. Lancet. 2022;400:1157-1170. doi:10.1016/s0140-6736(22)01439-8
Park I, Kim M, Choe K, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J. 2019;53:1800786. doi:10.1183/13993003.00786-2018
Alsabani M, Abrams ST, Cheng Z, et al. Reduction of NETosis by targeting CXCR1/2 reduces thrombosis, lung injury, and mortality in experimental human and murine sepsis. Br J Anaesth. 2022;128:283-293. doi:10.1016/j.bja.2021.10.039
Li Z, Yin M, Zhang H. BMX represses thrombin-PAR1-mediated endothelial permeability and vascular leakage during early sepsis. Circ Res. 2020;126:471-485. doi:10.1161/circresaha.119.315769
Hou L, Voit RA, Shibamura-Fujiogi M, et al. CD11c regulates neutrophil maturation. Blood Adv. 2023;7:1312-1325. doi:10.1182/bloodadvances.2022007719
Suzuki M, Ikari J, Anazawa R, et al. PAD4 deficiency improves bleomycin-induced neutrophil extracellular traps and fibrosis in mouse lung. Am J Respir Cell Mol Biol. 2020;63:806-818. doi:10.1165/rcmb.2019-0433OC
Silva CMS, Wanderley CWS, Veras FP, et al. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood. 2021;138:2702-2713. doi:10.1182/blood.2021011525
de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol. 2019;16:19-27. doi:10.1038/s41423-018-0024-0
McDonald B, Davis RP, Kim SJ, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129:1357-1367. doi:10.1182/blood-2016-09-741298
Zhang H, Liu J, Zhou Y, et al. Neutrophil extracellular traps mediate m(6)A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int J Biol Sci. 2022;18:3337-3357. doi:10.7150/ijbs.69141
Wang L, Cao Y, Gorshkov B, et al. Ablation of endothelial Pfkfb3 protects mice from acute lung injury in LPS-induced endotoxemia. Pharmacol Res. 2019;146:104292. doi:10.1016/j.phrs.2019.104292
Chen X, Yu C, Kang R, et al. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021;28:1135-1148. doi:10.1038/s41418-020-00728-1
Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis. Mol Cell. 2019;73:354-363. doi:10.1016/j.molcel.2018.10.042
Wu Y, Zhang S, Gong X, et al. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer. 2020;19:39. doi:10.1186/s12943-020-01157-x
Liu P, Feng Y, Li H, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett. 2020;25:10. 10.1186/s11658-020-00205-0
Zhao W, Cui Y, Liu L, et al. METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-Myc stability via YTHDF1-mediated m(6)A modification. Mol Ther Nucleic Acids. 2020;20:1-12. doi:10.1016/j.omtn.2020.01.033
Shen H, Xie K, Tian Y, et al. N6-methyladenosine writer METTL3 accelerates the sepsis-induced myocardial injury by regulating m6A-dependent ferroptosis. Apoptosis. 2023;28:514-524. doi:10.1007/s10495-022-01808-y
Shen H, Xie K, Li M, et al. N(6)-methyladenosine (m(6)A) methyltransferase METTL3 regulates sepsis-induced myocardial injury through IGF2BP1/HDAC4 dependent manner. Cell Death Discov. 2022;8:322. doi:10.1038/s41420-022-01099-x
Wu D, Shi Y, Zhang H, et al. Epigenetic mechanisms of immune remodeling in sepsis: targeting histone modification. Cell Death Dis. 2023;14:112. doi:10.1038/s41419-023-05656-9
Qu M, Chen Z, Qiu Z, et al. Neutrophil extracellular traps-triggered impaired autophagic flux via METTL3 underlies sepsis-associated acute lung injury. Cell Death Discov. 2022;8:375. doi:10.1038/s41420-022-01166-3
Jiang M, Roth MG, Chun-On P, et al. Phenotypic diversity caused by differential expression of SFTPC-Cre-transgenic alleles. Am J Respir Cell Mol Biol. 2020;62:692-698. doi:10.1165/rcmb.2019-0416MA
Yamamoto Y, Gotoh S, Korogi Y, et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods. 2017;14:1097-1106. doi:10.1038/nmeth.4448
LaCanna R, Liccardo D, Zhang P, et al. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J Clin Invest. 2019;129:2107-2122. doi:10.1172/jci125014
Katzen J, Wagner BD, Venosa A, et al. An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight. 2019;4:e126125. doi:10.1172/jci.insight.126125
Chen H, Pan Y, Zhou Q, et al. METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 2022;163:891-907. doi:10.1053/j.gastro.2022.06.024
Wang Q, Chen C, Ding Q, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69:1193-1205. doi:10.1136/gutjnl-2019-319639
Wei X, Huo Y, Pi J, et al. METTL3 preferentially enhances non-m(6)A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 2022;24:1278-1290. doi:10.1038/s41556-022-00968-y
Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5:e132747. doi:10.1172/jci.insight.132747
Weng H, Huang F, Yu Z, et al. The m(6)A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022;40:1566-1582. doi:10.1016/j.ccell.2022.10.004
Gong Y, Lan H, Yu Z, et al. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem Biophys Res Commun. 2017;491:522-529. doi:10.1016/j.bbrc.2017.05.173
Taylor CT, Scholz CC. The effect of HIF on metabolism and immunity. Nat Rev Nephrol. 2022;18:573-587. doi:10.1038/s41581-022-00587-8
Rashid M, Ramakrishnan M, Chandran VP, et al. Artificial intelligence in acute respiratory distress syndrome: a systematic review. Artif Intell Med. 2022;131:102361. doi:10.1016/j.artmed.2022.102361
Bukong TN, Cho Y, Iracheta-Vellve A, et al. Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol. 2018;69:1145-1154. doi:10.1016/j.jhep.2018.07.005
Denning NL, Aziz M, Gurien SD, et al. DAMPs and NETs in sepsis. Front Immunol. 2019;10:2536. doi:10.3389/fimmu.2019.02536
Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13:e1170. doi:10.1002/ctm2.1170
Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136:1169-1179. doi:10.1182/blood.2020007008
Zhang H, Zhou Y, Qu M, et al. Tissue factor-enriched neutrophil extracellular traps promote immunothrombosis and disease progression in sepsis-induced lung injury. Front Cell Infect Microbiol. 2021;11:677902. doi:10.3389/fcimb.2021.677902
Li Y, Gu J, Xu F, et al. Molecular characterization, biological function, tumor microenvironment association and clinical significance of m6A regulators in lung adenocarcinoma. Brief Bioinform. 2021;22:bbaa225. doi:10.1093/bib/bbaa225
He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176. doi:10.1186/s12943-019-1109-9
Aldabbous L, Abdul-Salam V, McKinnon T, et al. Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2016;36:2078-2087. doi:10.1161/atvbaha.116.307634
Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism. Annu Rev Physiol. 2017;79:43-66. doi:10.1146/annurev-physiol-021115-105134
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266-282. doi:10.1038/s41580-020-00324-8

Auteurs

Hao Zhang (H)

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.

Dan Wu (D)

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.

Yanghanzhao Wang (Y)

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.

Kefang Guo (K)

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.

Charles B Spencer (CB)

Department of Cardiac Surgery, Ohio State University, Columbus, Ohio, USA.

Lilibeth Ortoga (L)

Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA.

Mengdi Qu (M)

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.

Yuxin Shi (Y)

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.

Yuwen Shao (Y)

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.

Zhiping Wang (Z)

Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.

Juan P Cata (JP)

Department of Anesthesiology and Perioperative Medicine, University of Texas-MD Anderson Cancer Center, Houston, Texas, USA.
Anesthesiology and Surgical Oncology Research Group, Houston, Texas, USA.

Changhong Miao (C)

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH