Isoflurane and low-level carbon monoxide exposures increase expression of pro-survival miRNA in neonatal mouse heart.
Anesthetic
Apoptosis
Cardioprotective
MicroRNA
Mus musculus
Oxidative stress
Journal
Cell stress & chaperones
ISSN: 1466-1268
Titre abrégé: Cell Stress Chaperones
Pays: Netherlands
ID NLM: 9610925
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
received:
05
01
2021
accepted:
12
02
2021
revised:
08
02
2021
pubmed:
5
3
2021
medline:
27
1
2022
entrez:
4
3
2021
Statut:
ppublish
Résumé
Anesthetics such as isoflurane are known to cause apoptosis in the developing mammalian brain. However, isoflurane may have protective effects on the heart via relieving ischemia and downregulating genes related to apoptosis. Ischemic preconditioning, e.g. through the use of low levels of carbon monoxide (CO), has promise in preventing ischemia-reperfusion injury and cell death. However, it is still unclear how it either triggers the stress response in neonatal hearts. For this reason, thirty-three microRNAs (miRNAs) known to be differentially expressed following anesthesia and/or ischemic or hypoxic heart damage were investigated in the hearts from neonatal mice exposed to isoflurane or low level of CO, using an air-exposed control group. Only miR-93-5p increased with isoflurane exposure, which may be associated with the suppression of cell death, autophagy, and inflammation. By contrast, twelve miRNAs were differentially expressed in the heart following CO treatment. Many miRNAs previously shown to be responsible for suppressing cell death, autophagy, and myocardial hypertrophy were upregulated (e.g., 125b-3p, 19-3p, and 21a-5p). Finally, some miRNAs (miR-103-3p, miR-1a-3p, miR-199a-1-5p) which have been implicated in regulating energy balance and cardiac contraction were also differentially expressed. Overall, this study demonstrated that CO-mediated miRNA regulation may promote ischemic preconditioning and cardioprotection based on the putative protective roles of the differentially expressed miRNAs explored herein and the consistency of these results with those that have shown positive effects of CO on heart viability following anesthesia and ischemia-reperfusion stress.
Identifiants
pubmed: 33661504
doi: 10.1007/s12192-021-01199-0
pii: 10.1007/s12192-021-01199-0
pmc: PMC8065082
doi:
Substances chimiques
MicroRNAs
0
Carbon Monoxide
7U1EE4V452
Isoflurane
CYS9AKD70P
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
541-548Subventions
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : 6793
Références
Anal Biochem. 2006 Mar 15;350(2):310-2
pubmed: 16434019
Gene. 2016 Jul 1;585(1):44-50
pubmed: 26992639
Cardiovasc Res. 2012 May 1;94(2):284-92
pubmed: 22038740
Oncotarget. 2016 May 17;7(20):28796-805
pubmed: 27119510
Anesthesiology. 2015 Oct;123(4):786-798
pubmed: 26259139
Trends Biotechnol. 2019 Jul;37(7):761-774
pubmed: 30654913
FASEB J. 2007 Apr;21(4):1099-106
pubmed: 17264172
Mol Ther Oncolytics. 2018 Aug 16;11:14-19
pubmed: 30294667
FASEB J. 2004 Apr;18(6):771-2
pubmed: 14977880
Genet Test Mol Biomarkers. 2018 Nov;22(11):644-651
pubmed: 30346833
BMC Anesthesiol. 2018 Oct 24;18(1):149
pubmed: 30352555
PeerJ. 2016 Sep 28;4:e2436
pubmed: 27703842
Eur J Pharmacol. 2012 Sep 5;690(1-3):149-57
pubmed: 22796646
J Mol Cell Cardiol. 2006 Feb;40(2):283-94
pubmed: 16403513
Anesthesiology. 1986 Feb;64(2):238-42
pubmed: 3946810
Nat Commun. 2019 Apr 17;10(1):1802
pubmed: 30996254
Sci Rep. 2016 Apr 21;6:24747
pubmed: 27098600
Cell Death Differ. 2017 Jul;24(7):1205-1213
pubmed: 26160071
Circ Res. 2015 Jul 31;117(4):352-63
pubmed: 26038570
Cell. 2007 Apr 20;129(2):303-17
pubmed: 17397913
Anesth Analg. 2005 Dec;101(6):1584-1589
pubmed: 16301223
Front Physiol. 2019 Mar 18;10:235
pubmed: 30936836
Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1649-53
pubmed: 14704226
Mol Biol (Mosk). 2017 Jul-Aug;51(4):561-572
pubmed: 28900074
J Hypertens. 2018 Sep;36(9):1847-1857
pubmed: 29664809
Saudi Med J. 2015 Jul;36(7):787-93
pubmed: 26108581
J Mol Cell Cardiol. 2005 Jan;38(1):127-34
pubmed: 15623429
Anesth Analg. 2005 Nov;101(5):1275-1287
pubmed: 16243980
J Am Coll Cardiol. 2014 Mar 11;63(9):920-7
pubmed: 24161319
Int J Mol Med. 2014 Jul;34(1):291-8
pubmed: 24718700
J Mol Cell Cardiol. 2018 Jan;114:72-82
pubmed: 29122578
J Cell Physiol. 2019 May;234(5):6182-6193
pubmed: 30370578
J Neurosurg Anesthesiol. 2016 Oct;28(4):384-388
pubmed: 27564554
Cell Metab. 2013 Sep 3;18(3):341-54
pubmed: 24011070
Environ Health Perspect. 1991 Nov;95:191-8
pubmed: 1821371
Cardiovasc Res. 2016 May 15;110(2):258-67
pubmed: 26976621
Anesthesiology. 2015 Apr;122(4):795-805
pubmed: 25536091
Circ Res. 2003 Jul 25;93(2):e2-8
pubmed: 12842916
Gene. 2018 Nov 30;677:332-339
pubmed: 30103007
Mol Ther Nucleic Acids. 2019 Mar 1;14:424-437
pubmed: 30731323
Anal Biochem. 2014 Oct 1;462:32-4
pubmed: 24929089
Biochem Biophys Res Commun. 2010 Mar 12;393(3):449-54
pubmed: 20152804
Free Radic Biol Med. 2015 Sep;86:191-9
pubmed: 26032170
PLoS One. 2013;8(2):e52469
pubmed: 23468836
BMC Anesthesiol. 2014 Mar 10;14:17
pubmed: 24612850
J Am Assoc Lab Anim Sci. 2016 Jan;55(1):83-8
pubmed: 26817984
J Cardiovasc Med (Hagerstown). 2015 Jul;16(7):480-90
pubmed: 25689084
J Biol Chem. 2010 Jun 25;285(26):20281-90
pubmed: 20404348
Cardiovasc Res. 2014 Jun 1;102(3):385-95
pubmed: 24576954
J Transl Med. 2017 May 30;15(1):117
pubmed: 28558735
Oncotarget. 2017 Nov 28;8(67):110785-110796
pubmed: 29340016
Toxicol Lett. 2016 Aug 22;257:72-83
pubmed: 27220268