LTD is involved in the formation and maintenance of rat hippocampal CA1 place-cell fields.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 01 2021
Historique:
received: 16 02 2020
accepted: 25 11 2020
entrez: 5 1 2021
pubmed: 6 1 2021
medline: 15 1 2021
Statut: epublish

Résumé

Hippocampal synaptic plasticity includes both long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength, and has been implicated in shaping place field representations that form upon initial exposure to a novel environment. However, direct evidence causally linking either LTP or LTD to place fields remains limited. Here, we show that hippocampal LTD regulates the acute formation and maintenance of place fields using electrophysiology and blocking specifically LTD in freely-moving rats. We also show that exploration of a novel environment produces a widespread and pathway specific de novo synaptic depression in the dorsal hippocampus. Furthermore, disruption of this pathway-specific synaptic depression alters both the dynamics of place field formation and the stability of the newly formed place fields, affecting spatial memory in rats. These results suggest that activity-dependent synaptic depression is required for the acquisition and maintenance of novel spatial information.

Identifiants

pubmed: 33397954
doi: 10.1038/s41467-020-20317-7
pii: 10.1038/s41467-020-20317-7
pmc: PMC7782827
doi:

Substances chimiques

Peptides 0
Receptors, AMPA 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

100

Subventions

Organisme : CIHR
ID : FND-154286
Pays : Canada

Références

Morris, R. G. M. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J. Neurosci. 9, 3040–3057 (1989).
pubmed: 2552039 pmcid: 6569656 doi: 10.1523/JNEUROSCI.09-09-03040.1989
Morris, R. G. M., Anderson, E. A., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774 (1986).
pubmed: 2869411 doi: 10.1038/319774a0
Manahan-Vaughan, D. & Braunewell, K.-H. Novelty acquisition is associated with induction of hippocampal long-term depression. Proc. Natl Acad. Sci. USA 96, 8739–8744 (1999).
pubmed: 10411945 doi: 10.1073/pnas.96.15.8739 pmcid: 17586
Kemp, A. & Manahan-Vaughan, D. Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc. Natl Acad. Sci. USA 101, 8192–8197 (2004).
pubmed: 15150407 doi: 10.1073/pnas.0402650101 pmcid: 419579
Dong, Z. et al. Mechanisms of hippocampal long-term depression are required for memory enhancement by novelty exploration. J. Neurosci. 32, 11980–11990 (2012).
pubmed: 22933783 pmcid: 3774153 doi: 10.1523/JNEUROSCI.0984-12.2012
Li, S., Cullen, W. K., Anwyl, R. & Rowan, M. J. Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci. 6, 526–531 (2003).
pubmed: 12704392 doi: 10.1038/nn1049
Bliss, T. V. P. et al. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
pubmed: 8421494 doi: 10.1038/361031a0
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).
pubmed: 12052905 doi: 10.1146/annurev.neuro.25.112701.142758
Malenka, R. C. & Nicoll, R. A. Long-term potentiation-a decade of progress? Science 285, 1870–1874 (1999).
pubmed: 10489359 doi: 10.1126/science.285.5435.1870
Collingridge, G. L., Isaac, J. T. R. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).
pubmed: 15550950 doi: 10.1038/nrn1556
O’Keefe, J. & Speakman, A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68, 1–27 (1987).
pubmed: 3691688
O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).
pubmed: 5124915 doi: 10.1016/0006-8993(71)90358-1
Buzsaki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).
pubmed: 23354386 pmcid: 4079500 doi: 10.1038/nn.3304
Lever, C., Wills, T., Cacucci, F., Burgess, N. & O’keefe, J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416, 90 (2002).
pubmed: 11882899 doi: 10.1038/416090a
Cacucci, F., Wills, T. J., Lever, C., Giese, K. P. & O’Keefe, J. Experience-dependent increase in CA1 place cell spatial information, but not spatial reproducibility, is dependent on the autophosphorylation of the $α$-isoform of the calcium/calmodulin-dependent protein kinase II. J. Neurosci. 27, 7854–7859 (2007).
pubmed: 17634379 pmcid: 2680063 doi: 10.1523/JNEUROSCI.1704-07.2007
Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264 (2013).
pubmed: 23396101 pmcid: 3784308 doi: 10.1038/nn.3329
Thompson, L. T. & Best, P. J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 509, 299–308 (1990).
pubmed: 2322825 doi: 10.1016/0006-8993(90)90555-P
Markus, E. J., Barnes, C. A., McNaughton, B. L., Gladden, V. L. & Skaggs, W. E. Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus 4, 410–421 (1994).
pubmed: 7874233 doi: 10.1002/hipo.450040404
Lenck-Santini, P.-P., Save, E. & Poucet, B. Evidence for a relationship between place-cell spatial firing and spatial memory performance. Hippocampus 11, 377–390 (2001).
pubmed: 11530842 doi: 10.1002/hipo.1052
Kentros, C. et al. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121–2126 (1998).
pubmed: 9641919 doi: 10.1126/science.280.5372.2121
Rotenberg, A., Abel, T., Hawkins, R. D., Kandel, E. R. & Muller, R. U. Parallel instabilities of long-term potentiation, place cells, and learning caused by decreased protein kinase A activity. J. Neurosci. 20, 8096–8102 (2000).
pubmed: 11050131 pmcid: 6772748 doi: 10.1523/JNEUROSCI.20-21-08096.2000
Agnihotri, N. T., Hawkins, R. D., Kandel, E. R. & Kentros, C. The long-term stability of new hippocampal place fields requires new protein synthesis. Proc. Natl Acad. Sci. USA 101, 3656–3661 (2004).
pubmed: 14985509 doi: 10.1073/pnas.0400385101 pmcid: 373518
Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).
pubmed: 8351520 doi: 10.1126/science.8351520
Tanila, H., Shapiro, M., Gallagher, M. & Eichenbaum, H. Brain aging: changes in the nature of information coding by the hippocampus. J. Neurosci. 17, 5155–5166 (1997).
pubmed: 9185553 pmcid: 6573305 doi: 10.1523/JNEUROSCI.17-13-05155.1997
Frank, L. M., Stanley, G. B. & Brown, E. N. Hippocampal plasticity across multiple days of exposure to novel environments. J. Neurosci. 24, 7681–7689 (2004).
pubmed: 15342735 pmcid: 6729632 doi: 10.1523/JNEUROSCI.1958-04.2004
Monaco, J. D., Rao, G., Roth, E. D. & Knierim, J. J. Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nat. Neurosci. 17, 725 (2014).
pubmed: 24686786 pmcid: 4036486 doi: 10.1038/nn.3687
Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).
pubmed: 16931756 doi: 10.1126/science.1128134
Hargreaves, E. L., Cain, D. P. & Vanderwolf, C. H. Learning and behavioral-long-term potentiation: importance of controlling for motor activity. J. Neurosci. 10, 1472–1478 (1990).
pubmed: 2332791 pmcid: 6570083 doi: 10.1523/JNEUROSCI.10-05-01472.1990
Moser, E. I. Learning-related changes in hippocampal field potentials. Behav. Brain Res. 71, 1–N1 (1995).
doi: 10.1016/0166-4328(95)00051-8
Leung, L. S. & Shen, B. Long-term potentiation at the apical and basal dendritic synapses of CA1 after local stimulation in behaving rats. J. Neurophysiol. 73, 1938–1946 (1995).
pubmed: 7623092 doi: 10.1152/jn.1995.73.5.1938
Ahmadian, G. et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050 (2004).
pubmed: 14976558 pmcid: 380981 doi: 10.1038/sj.emboj.7600126
Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).
pubmed: 16311338 doi: 10.1126/science.1116894
Moser, E. I., Moser, M.-B. & Andersen, P. Potentiation of dentate synapses initiated by exploratory learning in rats: dissociation from brain temperature, motor activity, and arousal. Learn. Mem. 1, 55–73 (1994).
pubmed: 10467586 doi: 10.1101/lm.1.1.55
Moser, E., Mathiesen, I. & Andersen, P. Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259, 1324–1326 (1993).
pubmed: 8446900 doi: 10.1126/science.8446900
Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 221–224 (1997).
doi: 10.1126/science.275.5297.221
Rotenberg, A., Mayford, M., Hawkins, R. D., Kandel, E. R. & Muller, R. U. Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell 87, 1351–1361 (1996).
pubmed: 8980240 doi: 10.1016/S0092-8674(00)81829-2
Cho, Y. H., Giese, K. P., Tanila, H., Silva, A. J. & Eichenbaum, H. Abnormal hippocampal spatial representations in αCaMKIIT286A and CREBαΔ-mice. Science 279, 867–869 (1998).
pubmed: 9452387 doi: 10.1126/science.279.5352.867
Agnihotri, N. T., Hawkins, R. D., Kandel, E. R., & Kentros, C. The long-term stability of new hippocampal place fields requires new protein synthesis. Proceedings of the National Academy of Sciences of the United States of America 101, 10, 3656-3661. (2004).
Morris, R. G. M. et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. B Biol. Sci. 358, 773–786 (2003).
doi: 10.1098/rstb.2002.1264
Martin, S. J., Grimwood, P. D. & Morris, R. G. M. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).
pubmed: 10845078 doi: 10.1146/annurev.neuro.23.1.649
Powell, N. J. & Redish, A. D. Complex neural codes in rat prelimbic cortex are stable across days on a spatial decision task. Front. Behav. Neurosci. 8, 120 (2014).
pubmed: 24795579 pmcid: 4005964 doi: 10.3389/fnbeh.2014.00120
Tolias, A. S. et al. Recording chronically from the same neurons in awake, behaving primates. J. Neurophysiol. 98, 3780–3790 (2007).
pubmed: 17942615 doi: 10.1152/jn.00260.2007
Tanila, H., Perttu, S., Shapiro, M. & Eichenbaum, H. Brain aging: impaired coding of novel environmental cues. J. Neurosci. 17, 5167–5174 (1997).
pubmed: 9185554 pmcid: 6573308 doi: 10.1523/JNEUROSCI.17-13-05167.1997
Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941 (2009).
pubmed: 19829374 pmcid: 2771429 doi: 10.1038/nature08499
Epsztein, J., Brecht, M. & Lee, A. K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).
pubmed: 21482360 pmcid: 3221010 doi: 10.1016/j.neuron.2011.03.006
Lee, D., Lin, B.-J. & Lee, A. K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012).
pubmed: 22904011 doi: 10.1126/science.1221489
Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133 (2015).
pubmed: 26167906 pmcid: 4888374 doi: 10.1038/nn.4062
Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).
pubmed: 28883072 pmcid: 7289271 doi: 10.1126/science.aan3846
Dalton, G. L., Wang, Y. T., Floresco, S. B. & Phillips, A. G. Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacology 33, 2416 (2008).
pubmed: 18046303 doi: 10.1038/sj.npp.1301642
Rudy, J. W., Huff, N. C. & Matus-Amat, P. Understanding contextual fear conditioning: insights from a two-process model. Neurosci. Biobehav. Rev. 28, 675–685 (2004).
pubmed: 15555677 doi: 10.1016/j.neubiorev.2004.09.004
Roesler, R. et al. Intrahippocampal infusion of the NMDA receptor antagonist AP5 impairs retention of an inhibitory avoidance task: protection from impairment by pretraining or preexposure to the task apparatus. Neurobiol. Learn. Mem. 69, 87–91 (1998).
pubmed: 9619989 doi: 10.1006/nlme.1997.3810
Roesler, R. et al. Differential involvement of hippocampal and amygdalar NMDA receptors in contextual and aversive aspects of inhibitory avoidance memory in rats. Brain Res. 975, 207–213 (2003).
pubmed: 12763609 doi: 10.1016/S0006-8993(03)02656-8
Leung, L. S. Behavior-dependent evoked potentials in the hippocampal CA1 region of the rat. I. Correlation with behavior and egg. Brain Res. 198, 95–117 (1980).
pubmed: 7407597 doi: 10.1016/0006-8993(80)90347-9
Hagena, H. & Manahan-Vaughan, D. Learning-facilitated long-term depression and long-term potentiation at mossy fiber—CA3 synapses requires activation of β-adrenergic receptors. Front. Integr. Neurosci. 6, 23 (2012).
pubmed: 22654741 pmcid: 3358719 doi: 10.3389/fnint.2012.00023
Kemp, A. & Manahan-Vaughan, D. Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci. 30, 111–118 (2007).
pubmed: 17234277 doi: 10.1016/j.tins.2007.01.002
Cooper, L. N. & Bear, M. F. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798 (2012).
pubmed: 23080416 doi: 10.1038/nrn3353
Sajikumar, S., Navakkode, S. & Frey, J. U. Identification of compartment-and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in hippocampal CA1. J. Neurosci. 27, 5068–5080 (2007).
pubmed: 17494693 pmcid: 6672381 doi: 10.1523/JNEUROSCI.4940-06.2007
Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206 (2008).
pubmed: 18270515 doi: 10.1038/nrn2286
Grienberger, C., Chen, X. & Konnerth, A. NMDA receptor-dependent multidendrite Ca
pubmed: 24560703 doi: 10.1016/j.neuron.2014.01.014
Dudman, J. T., Tsay, D. & Siegelbaum, S. A. A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56, 866–879 (2007).
pubmed: 18054862 pmcid: 2179894 doi: 10.1016/j.neuron.2007.10.020
Takahashi, H. & Magee, J. C. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62, 102–111 (2009).
pubmed: 19376070 doi: 10.1016/j.neuron.2009.03.007
Jarsky, T., Roxin, A., Kath, W. L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667 (2005).
pubmed: 16299501 doi: 10.1038/nn1599
Fanselow, M. S. Associative vs topographical accounts of the immediate shock-freezing deficit in rats: implications for the response selection rules governing species-specific defensive reactions. Learn. Motiv. 17, 16–39 (1986).
doi: 10.1016/0023-9690(86)90018-4
Collingridge, G. L., Peineau, S., Howland, J. G. & Wang, Y. T. Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459 (2010).
pubmed: 20559335 doi: 10.1038/nrn2867
Kim, J.-I. et al. PI3Kγ is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat. Neurosci. 14, 1447–1454 (2011).
pubmed: 22019731 doi: 10.1038/nn.2937
Migues, P. V. et al. Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J. Neurosci. 36, 3481–3494 (2016).
pubmed: 27013677 pmcid: 6601735 doi: 10.1523/JNEUROSCI.3333-15.2016
Hardt, O., Nader, K. & Wang, Y.-T. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short-and long-term memories. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130141 (2014).
doi: 10.1098/rstb.2013.0141
Griffiths, S. et al. Expression of long-term depression underlies visual recognition memory. Neuron 58, 186–194 (2008).
pubmed: 18439404 doi: 10.1016/j.neuron.2008.02.022
Cazakoff, B. N. & Howland, J. G. AMPA receptor endocytosis in rat perirhinal cortex underlies retrieval of object memory. Learn. Mem. 18, 688–692 (2011).
pubmed: 22005749 doi: 10.1101/lm.2312711
Ge, Y. et al. Hippocampal long-term depression is required for the consolidation of spatial memory. Proc. Natl Acad. Sci. USA 107, 16697–16702 (2010).
pubmed: 20823230 doi: 10.1073/pnas.1008200107 pmcid: 2944752
Liang, K. C. Pre‐or post‐training injection of buspirone impaired retention in the inhibitory avoidance task: involvement of amygdala 5‐HT1A receptors. European Journal of Neuroscience, 11, 5, 1491–1500 (1999).
Malin, E. L., & McGaugh, J. L. Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proceedings of the National Academy of Sciences, 103, 6, 1959–1963 (2006).

Auteurs

Donovan M Ashby (DM)

Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, AB, Canada.

Stan B Floresco (SB)

Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z7, BC, Canada.
Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, V6T 1Z4, BC, Canada.

Anthony G Phillips (AG)

Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z7, BC, Canada.
Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T 2A1, BC, Canada.

Alexander McGirr (A)

Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, AB, Canada.
Department of Psychiatry, University of Calgary, 3330 Hospital Dr NW, Calgary, T2N 4N1, AB, Canada.

Jeremy K Seamans (JK)

Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z7, BC, Canada.
Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T 2A1, BC, Canada.

Yu Tian Wang (YT)

Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z7, BC, Canada. ytwang@brain.ubc.ca.
Department of Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Vancouver, V5Z 1M9, BC, Canada. ytwang@brain.ubc.ca.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH