LTD is involved in the formation and maintenance of rat hippocampal CA1 place-cell fields.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
04 01 2021
04 01 2021
Historique:
received:
16
02
2020
accepted:
25
11
2020
entrez:
5
1
2021
pubmed:
6
1
2021
medline:
15
1
2021
Statut:
epublish
Résumé
Hippocampal synaptic plasticity includes both long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength, and has been implicated in shaping place field representations that form upon initial exposure to a novel environment. However, direct evidence causally linking either LTP or LTD to place fields remains limited. Here, we show that hippocampal LTD regulates the acute formation and maintenance of place fields using electrophysiology and blocking specifically LTD in freely-moving rats. We also show that exploration of a novel environment produces a widespread and pathway specific de novo synaptic depression in the dorsal hippocampus. Furthermore, disruption of this pathway-specific synaptic depression alters both the dynamics of place field formation and the stability of the newly formed place fields, affecting spatial memory in rats. These results suggest that activity-dependent synaptic depression is required for the acquisition and maintenance of novel spatial information.
Identifiants
pubmed: 33397954
doi: 10.1038/s41467-020-20317-7
pii: 10.1038/s41467-020-20317-7
pmc: PMC7782827
doi:
Substances chimiques
Peptides
0
Receptors, AMPA
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
100Subventions
Organisme : CIHR
ID : FND-154286
Pays : Canada
Références
Morris, R. G. M. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J. Neurosci. 9, 3040–3057 (1989).
pubmed: 2552039
pmcid: 6569656
doi: 10.1523/JNEUROSCI.09-09-03040.1989
Morris, R. G. M., Anderson, E. A., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774 (1986).
pubmed: 2869411
doi: 10.1038/319774a0
Manahan-Vaughan, D. & Braunewell, K.-H. Novelty acquisition is associated with induction of hippocampal long-term depression. Proc. Natl Acad. Sci. USA 96, 8739–8744 (1999).
pubmed: 10411945
doi: 10.1073/pnas.96.15.8739
pmcid: 17586
Kemp, A. & Manahan-Vaughan, D. Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc. Natl Acad. Sci. USA 101, 8192–8197 (2004).
pubmed: 15150407
doi: 10.1073/pnas.0402650101
pmcid: 419579
Dong, Z. et al. Mechanisms of hippocampal long-term depression are required for memory enhancement by novelty exploration. J. Neurosci. 32, 11980–11990 (2012).
pubmed: 22933783
pmcid: 3774153
doi: 10.1523/JNEUROSCI.0984-12.2012
Li, S., Cullen, W. K., Anwyl, R. & Rowan, M. J. Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci. 6, 526–531 (2003).
pubmed: 12704392
doi: 10.1038/nn1049
Bliss, T. V. P. et al. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
pubmed: 8421494
doi: 10.1038/361031a0
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).
pubmed: 12052905
doi: 10.1146/annurev.neuro.25.112701.142758
Malenka, R. C. & Nicoll, R. A. Long-term potentiation-a decade of progress? Science 285, 1870–1874 (1999).
pubmed: 10489359
doi: 10.1126/science.285.5435.1870
Collingridge, G. L., Isaac, J. T. R. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).
pubmed: 15550950
doi: 10.1038/nrn1556
O’Keefe, J. & Speakman, A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68, 1–27 (1987).
pubmed: 3691688
O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).
pubmed: 5124915
doi: 10.1016/0006-8993(71)90358-1
Buzsaki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).
pubmed: 23354386
pmcid: 4079500
doi: 10.1038/nn.3304
Lever, C., Wills, T., Cacucci, F., Burgess, N. & O’keefe, J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416, 90 (2002).
pubmed: 11882899
doi: 10.1038/416090a
Cacucci, F., Wills, T. J., Lever, C., Giese, K. P. & O’Keefe, J. Experience-dependent increase in CA1 place cell spatial information, but not spatial reproducibility, is dependent on the autophosphorylation of the $α$-isoform of the calcium/calmodulin-dependent protein kinase II. J. Neurosci. 27, 7854–7859 (2007).
pubmed: 17634379
pmcid: 2680063
doi: 10.1523/JNEUROSCI.1704-07.2007
Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264 (2013).
pubmed: 23396101
pmcid: 3784308
doi: 10.1038/nn.3329
Thompson, L. T. & Best, P. J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 509, 299–308 (1990).
pubmed: 2322825
doi: 10.1016/0006-8993(90)90555-P
Markus, E. J., Barnes, C. A., McNaughton, B. L., Gladden, V. L. & Skaggs, W. E. Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus 4, 410–421 (1994).
pubmed: 7874233
doi: 10.1002/hipo.450040404
Lenck-Santini, P.-P., Save, E. & Poucet, B. Evidence for a relationship between place-cell spatial firing and spatial memory performance. Hippocampus 11, 377–390 (2001).
pubmed: 11530842
doi: 10.1002/hipo.1052
Kentros, C. et al. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121–2126 (1998).
pubmed: 9641919
doi: 10.1126/science.280.5372.2121
Rotenberg, A., Abel, T., Hawkins, R. D., Kandel, E. R. & Muller, R. U. Parallel instabilities of long-term potentiation, place cells, and learning caused by decreased protein kinase A activity. J. Neurosci. 20, 8096–8102 (2000).
pubmed: 11050131
pmcid: 6772748
doi: 10.1523/JNEUROSCI.20-21-08096.2000
Agnihotri, N. T., Hawkins, R. D., Kandel, E. R. & Kentros, C. The long-term stability of new hippocampal place fields requires new protein synthesis. Proc. Natl Acad. Sci. USA 101, 3656–3661 (2004).
pubmed: 14985509
doi: 10.1073/pnas.0400385101
pmcid: 373518
Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).
pubmed: 8351520
doi: 10.1126/science.8351520
Tanila, H., Shapiro, M., Gallagher, M. & Eichenbaum, H. Brain aging: changes in the nature of information coding by the hippocampus. J. Neurosci. 17, 5155–5166 (1997).
pubmed: 9185553
pmcid: 6573305
doi: 10.1523/JNEUROSCI.17-13-05155.1997
Frank, L. M., Stanley, G. B. & Brown, E. N. Hippocampal plasticity across multiple days of exposure to novel environments. J. Neurosci. 24, 7681–7689 (2004).
pubmed: 15342735
pmcid: 6729632
doi: 10.1523/JNEUROSCI.1958-04.2004
Monaco, J. D., Rao, G., Roth, E. D. & Knierim, J. J. Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nat. Neurosci. 17, 725 (2014).
pubmed: 24686786
pmcid: 4036486
doi: 10.1038/nn.3687
Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).
pubmed: 16931756
doi: 10.1126/science.1128134
Hargreaves, E. L., Cain, D. P. & Vanderwolf, C. H. Learning and behavioral-long-term potentiation: importance of controlling for motor activity. J. Neurosci. 10, 1472–1478 (1990).
pubmed: 2332791
pmcid: 6570083
doi: 10.1523/JNEUROSCI.10-05-01472.1990
Moser, E. I. Learning-related changes in hippocampal field potentials. Behav. Brain Res. 71, 1–N1 (1995).
doi: 10.1016/0166-4328(95)00051-8
Leung, L. S. & Shen, B. Long-term potentiation at the apical and basal dendritic synapses of CA1 after local stimulation in behaving rats. J. Neurophysiol. 73, 1938–1946 (1995).
pubmed: 7623092
doi: 10.1152/jn.1995.73.5.1938
Ahmadian, G. et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050 (2004).
pubmed: 14976558
pmcid: 380981
doi: 10.1038/sj.emboj.7600126
Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).
pubmed: 16311338
doi: 10.1126/science.1116894
Moser, E. I., Moser, M.-B. & Andersen, P. Potentiation of dentate synapses initiated by exploratory learning in rats: dissociation from brain temperature, motor activity, and arousal. Learn. Mem. 1, 55–73 (1994).
pubmed: 10467586
doi: 10.1101/lm.1.1.55
Moser, E., Mathiesen, I. & Andersen, P. Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259, 1324–1326 (1993).
pubmed: 8446900
doi: 10.1126/science.8446900
Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 221–224 (1997).
doi: 10.1126/science.275.5297.221
Rotenberg, A., Mayford, M., Hawkins, R. D., Kandel, E. R. & Muller, R. U. Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell 87, 1351–1361 (1996).
pubmed: 8980240
doi: 10.1016/S0092-8674(00)81829-2
Cho, Y. H., Giese, K. P., Tanila, H., Silva, A. J. & Eichenbaum, H. Abnormal hippocampal spatial representations in αCaMKIIT286A and CREBαΔ-mice. Science 279, 867–869 (1998).
pubmed: 9452387
doi: 10.1126/science.279.5352.867
Agnihotri, N. T., Hawkins, R. D., Kandel, E. R., & Kentros, C. The long-term stability of new hippocampal place fields requires new protein synthesis. Proceedings of the National Academy of Sciences of the United States of America 101, 10, 3656-3661. (2004).
Morris, R. G. M. et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. B Biol. Sci. 358, 773–786 (2003).
doi: 10.1098/rstb.2002.1264
Martin, S. J., Grimwood, P. D. & Morris, R. G. M. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).
pubmed: 10845078
doi: 10.1146/annurev.neuro.23.1.649
Powell, N. J. & Redish, A. D. Complex neural codes in rat prelimbic cortex are stable across days on a spatial decision task. Front. Behav. Neurosci. 8, 120 (2014).
pubmed: 24795579
pmcid: 4005964
doi: 10.3389/fnbeh.2014.00120
Tolias, A. S. et al. Recording chronically from the same neurons in awake, behaving primates. J. Neurophysiol. 98, 3780–3790 (2007).
pubmed: 17942615
doi: 10.1152/jn.00260.2007
Tanila, H., Perttu, S., Shapiro, M. & Eichenbaum, H. Brain aging: impaired coding of novel environmental cues. J. Neurosci. 17, 5167–5174 (1997).
pubmed: 9185554
pmcid: 6573308
doi: 10.1523/JNEUROSCI.17-13-05167.1997
Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941 (2009).
pubmed: 19829374
pmcid: 2771429
doi: 10.1038/nature08499
Epsztein, J., Brecht, M. & Lee, A. K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).
pubmed: 21482360
pmcid: 3221010
doi: 10.1016/j.neuron.2011.03.006
Lee, D., Lin, B.-J. & Lee, A. K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012).
pubmed: 22904011
doi: 10.1126/science.1221489
Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133 (2015).
pubmed: 26167906
pmcid: 4888374
doi: 10.1038/nn.4062
Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).
pubmed: 28883072
pmcid: 7289271
doi: 10.1126/science.aan3846
Dalton, G. L., Wang, Y. T., Floresco, S. B. & Phillips, A. G. Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacology 33, 2416 (2008).
pubmed: 18046303
doi: 10.1038/sj.npp.1301642
Rudy, J. W., Huff, N. C. & Matus-Amat, P. Understanding contextual fear conditioning: insights from a two-process model. Neurosci. Biobehav. Rev. 28, 675–685 (2004).
pubmed: 15555677
doi: 10.1016/j.neubiorev.2004.09.004
Roesler, R. et al. Intrahippocampal infusion of the NMDA receptor antagonist AP5 impairs retention of an inhibitory avoidance task: protection from impairment by pretraining or preexposure to the task apparatus. Neurobiol. Learn. Mem. 69, 87–91 (1998).
pubmed: 9619989
doi: 10.1006/nlme.1997.3810
Roesler, R. et al. Differential involvement of hippocampal and amygdalar NMDA receptors in contextual and aversive aspects of inhibitory avoidance memory in rats. Brain Res. 975, 207–213 (2003).
pubmed: 12763609
doi: 10.1016/S0006-8993(03)02656-8
Leung, L. S. Behavior-dependent evoked potentials in the hippocampal CA1 region of the rat. I. Correlation with behavior and egg. Brain Res. 198, 95–117 (1980).
pubmed: 7407597
doi: 10.1016/0006-8993(80)90347-9
Hagena, H. & Manahan-Vaughan, D. Learning-facilitated long-term depression and long-term potentiation at mossy fiber—CA3 synapses requires activation of β-adrenergic receptors. Front. Integr. Neurosci. 6, 23 (2012).
pubmed: 22654741
pmcid: 3358719
doi: 10.3389/fnint.2012.00023
Kemp, A. & Manahan-Vaughan, D. Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci. 30, 111–118 (2007).
pubmed: 17234277
doi: 10.1016/j.tins.2007.01.002
Cooper, L. N. & Bear, M. F. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798 (2012).
pubmed: 23080416
doi: 10.1038/nrn3353
Sajikumar, S., Navakkode, S. & Frey, J. U. Identification of compartment-and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in hippocampal CA1. J. Neurosci. 27, 5068–5080 (2007).
pubmed: 17494693
pmcid: 6672381
doi: 10.1523/JNEUROSCI.4940-06.2007
Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206 (2008).
pubmed: 18270515
doi: 10.1038/nrn2286
Grienberger, C., Chen, X. & Konnerth, A. NMDA receptor-dependent multidendrite Ca
pubmed: 24560703
doi: 10.1016/j.neuron.2014.01.014
Dudman, J. T., Tsay, D. & Siegelbaum, S. A. A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56, 866–879 (2007).
pubmed: 18054862
pmcid: 2179894
doi: 10.1016/j.neuron.2007.10.020
Takahashi, H. & Magee, J. C. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62, 102–111 (2009).
pubmed: 19376070
doi: 10.1016/j.neuron.2009.03.007
Jarsky, T., Roxin, A., Kath, W. L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667 (2005).
pubmed: 16299501
doi: 10.1038/nn1599
Fanselow, M. S. Associative vs topographical accounts of the immediate shock-freezing deficit in rats: implications for the response selection rules governing species-specific defensive reactions. Learn. Motiv. 17, 16–39 (1986).
doi: 10.1016/0023-9690(86)90018-4
Collingridge, G. L., Peineau, S., Howland, J. G. & Wang, Y. T. Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459 (2010).
pubmed: 20559335
doi: 10.1038/nrn2867
Kim, J.-I. et al. PI3Kγ is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat. Neurosci. 14, 1447–1454 (2011).
pubmed: 22019731
doi: 10.1038/nn.2937
Migues, P. V. et al. Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J. Neurosci. 36, 3481–3494 (2016).
pubmed: 27013677
pmcid: 6601735
doi: 10.1523/JNEUROSCI.3333-15.2016
Hardt, O., Nader, K. & Wang, Y.-T. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short-and long-term memories. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130141 (2014).
doi: 10.1098/rstb.2013.0141
Griffiths, S. et al. Expression of long-term depression underlies visual recognition memory. Neuron 58, 186–194 (2008).
pubmed: 18439404
doi: 10.1016/j.neuron.2008.02.022
Cazakoff, B. N. & Howland, J. G. AMPA receptor endocytosis in rat perirhinal cortex underlies retrieval of object memory. Learn. Mem. 18, 688–692 (2011).
pubmed: 22005749
doi: 10.1101/lm.2312711
Ge, Y. et al. Hippocampal long-term depression is required for the consolidation of spatial memory. Proc. Natl Acad. Sci. USA 107, 16697–16702 (2010).
pubmed: 20823230
doi: 10.1073/pnas.1008200107
pmcid: 2944752
Liang, K. C. Pre‐or post‐training injection of buspirone impaired retention in the inhibitory avoidance task: involvement of amygdala 5‐HT1A receptors. European Journal of Neuroscience, 11, 5, 1491–1500 (1999).
Malin, E. L., & McGaugh, J. L. Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proceedings of the National Academy of Sciences, 103, 6, 1959–1963 (2006).