Distinct photo-oxidation-induced cell death pathways lead to selective killing of human breast cancer cells.
Antioxidants
/ pharmacology
Breast Neoplasms
/ drug therapy
Carcinogenesis
/ drug effects
Cell Death
/ drug effects
Cell Line, Tumor
Female
Ferroptosis
/ drug effects
Humans
Light
Lipids
/ chemistry
Lysosomes
/ drug effects
Methylene Blue
/ pharmacology
Models, Biological
Necroptosis
/ drug effects
Oxidation-Reduction
Photochemotherapy
Triple Negative Breast Neoplasms
/ pathology
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
14 12 2020
14 12 2020
Historique:
received:
04
08
2020
accepted:
20
11
2020
revised:
19
11
2020
entrez:
15
12
2020
pubmed:
16
12
2020
medline:
10
4
2021
Statut:
epublish
Résumé
Lack of effective treatments for aggressive breast cancer is still a major global health problem. We have previously reported that photodynamic therapy using methylene blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study, we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness and specificity towards tumor cells. Through lipidomics and biochemical approaches, we demonstrated that MB-PDT efficiency and specificity rely on polyunsaturated fatty acid-enriched membranes and on the better capacity to deal with photo-oxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results also pointed at a cross-talk between lysosome-dependent cell death (LDCD) and necroptosis induction after photo-oxidation, and contributed to broaden the understanding of MB-PDT-induced mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.
Identifiants
pubmed: 33318476
doi: 10.1038/s41419-020-03275-2
pii: 10.1038/s41419-020-03275-2
pmc: PMC7736888
doi:
Substances chimiques
Antioxidants
0
Lipids
0
Methylene Blue
T42P99266K
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1070Références
PLoS One. 2020 Apr 14;15(4):e0231289
pubmed: 32287294
Int J Mol Sci. 2020 May 09;21(9):
pubmed: 32397477
Nat Commun. 2019 Apr 8;10(1):1617
pubmed: 30962421
Nanoscale Res Lett. 2020 May 20;15(1):115
pubmed: 32436107
Cell Rep. 2014 May 22;7(4):971-81
pubmed: 24813885
Oncoimmunology. 2016 Mar 10;5(6):e1149673
pubmed: 27471616
Biochim Biophys Acta Biomembr. 2019 Mar 1;1861(3):660-669
pubmed: 30605637
J Neurosurg. 2006 Jan;104(1):109-17
pubmed: 16509154
Nat Rev Dis Primers. 2019 Sep 23;5(1):66
pubmed: 31548545
Mol Cell. 2018 Jun 7;70(5):936-948.e7
pubmed: 29883610
Free Radic Biol Med. 2011 Aug 15;51(4):824-33
pubmed: 21664269
Can J Biochem Physiol. 1959 Aug;37(8):911-7
pubmed: 13671378
Nat Rev Mol Cell Biol. 2014 Feb;15(2):135-47
pubmed: 24452471
Nature. 2019 Nov;575(7784):693-698
pubmed: 31634899
Breast Cancer Res. 2014 Sep 11;16(5):434
pubmed: 25209360
Cell Death Differ. 2016 Jul;23(7):1099-109
pubmed: 26967968
PLoS One. 2015 Mar 23;10(3):e0121989
pubmed: 25799218
Cancer Metastasis Rev. 2015 Dec;34(4):643-90
pubmed: 26516076
Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24
pubmed: 18216768
Theranostics. 2020 Jan 20;10(5):2436-2452
pubmed: 32089747
Free Radic Biol Med. 2020 Sep;157:94-127
pubmed: 32259579
Annu Rev Biochem. 2017 Jun 20;86:715-748
pubmed: 28441057
Anal Biochem. 1997 May 15;248(1):31-40
pubmed: 9177722
JPEN J Parenter Enteral Nutr. 2015 Sep;39(1 Suppl):18S-32S
pubmed: 26177664
Cell. 2014 Jan 16;156(1-2):317-331
pubmed: 24439385
Cell Death Dis. 2019 Apr 15;10(5):331
pubmed: 30988278
Photochem Photobiol. 2020 May;96(3):658-667
pubmed: 31742700
Front Chem. 2019 Oct 29;7:719
pubmed: 31737599
Nat Rev Mol Cell Biol. 2018 May;19(5):281-296
pubmed: 29410529
Chem Rev. 2011 Oct 12;111(10):5944-72
pubmed: 21861450
Biochim Biophys Acta. 2013 May;1830(5):3289-303
pubmed: 23201771
Trends Biochem Sci. 2016 Mar;41(3):274-286
pubmed: 26725301
BMC Cancer. 2017 Mar 15;17(1):194
pubmed: 28298203
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4966-75
pubmed: 27506793
Int J Mol Sci. 2016 Jan 14;17(1):
pubmed: 26784170
Cell Death Dis. 2018 Apr 23;9(5):476
pubmed: 29686269
J Surg Res. 2015 Jul;197(1):5-11
pubmed: 25799527
Cell. 2017 Oct 5;171(2):273-285
pubmed: 28985560
Mol Cell. 2020 Feb 6;77(3):645-655.e7
pubmed: 31983508
Nat Chem Biol. 2017 Jan;13(1):81-90
pubmed: 27842066
Metabolites. 2020 Feb 13;10(2):
pubmed: 32069969
Lasers Surg Med. 2006 Jun;38(5):489-93
pubmed: 16615136
Mol Cell. 2016 Feb 18;61(4):589-601
pubmed: 26853145
Nature. 2019 Nov;575(7784):688-692
pubmed: 31634900
J Am Chem Soc. 2018 Aug 1;140(30):9606-9615
pubmed: 29989809
CA Cancer J Clin. 2011 Jul-Aug;61(4):250-81
pubmed: 21617154
Photochem Photobiol. 2014 Jul-Aug;90(4):801-13
pubmed: 24571440
Front Oncol. 2018 Jun 14;8:227
pubmed: 29963498
Cell Death Differ. 2018 Mar;25(3):486-541
pubmed: 29362479
ACS Chem Biol. 2018 Mar 16;13(3):506-515
pubmed: 29376324
Cell Chem Biol. 2019 Mar 21;26(3):420-432.e9
pubmed: 30686757
Biochimie. 2016 Apr;123:32-6
pubmed: 26796882
J Biol Chem. 1998 Apr 17;273(16):9357-60
pubmed: 9545256
Free Radic Biol Med. 2019 Apr;134:394-405
pubmed: 30699366