A disintegrin and metalloproteinase domain-15 deficiency leads to exaggerated cigarette smoke-induced chronic obstructive pulmonary disease (COPD)-like disease in mice.


Journal

Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742

Informations de publication

Date de publication:
03 2021
Historique:
received: 17 02 2020
accepted: 06 07 2020
revised: 21 06 2020
pubmed: 22 7 2020
medline: 30 11 2021
entrez: 22 7 2020
Statut: ppublish

Résumé

A disintegrin and metalloproteinase domain-15 (ADAM15) is expressed by cells implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), but its contributions to COPD are unknown. To address this gap, ADAM15 levels were measured in samples from cigarette smoke (CS)-versus air-exposed wild-type (WT) mice. CS-induced COPD-like disease was compared in CS-exposed WT, Adam15

Identifiants

pubmed: 32690871
doi: 10.1038/s41385-020-0325-3
pii: S1933-0219(22)00135-0
pmc: PMC8422911
mid: NIHMS1733978
doi:

Substances chimiques

Membrane Proteins 0
TOR Serine-Threonine Kinases EC 2.7.11.1
ADAM Proteins EC 3.4.24.-
Adam15 protein, mouse EC 3.4.24.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

342-356

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL140839
Pays : United States
Organisme : NHLBI NIH HHS
ID : F32 HL147437
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL068111
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI111475
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL063137
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL111835
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL086814
Pays : United States

Références

Quaderi, S. A. & Hurst, J. R. The unmet global burden of COPD. Glob. Health Epidemiol. Genom. 3, e4 (2018).
pubmed: 29868229 pmcid: 5921960
Owen, C. A. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease. Int J. Chron. Obstruct. Pulmon. Dis. 3, 253–268 (2008).
pubmed: 18686734 pmcid: 2629972
Rabe, K. F. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 176, 532–555 (2007).
pubmed: 17507545
Kasahara, Y. et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest 106, 1311–1319 (2000).
pubmed: 11104784 pmcid: 387249
Shapiro, S. D. et al. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am. J. Pathol. 163, 2329–2335 (2003).
pubmed: 14633606 pmcid: 1892384
Molet, S. et al. Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflamm. Res. 54, 31–36 (2005).
pubmed: 15723202
Wang, X. et al. A Disintegrin and a metalloproteinase-9 (ADAM9): a novel proteinase culprit with multifarious contributions to COPD. Am. J. Respir. Crit. Care. Med. 198, 1500–1518 (2018).
pmcid: 6298633
Polverino, F. et al. A disintegrin and metalloproteinase domain-8: a novel protective proteinase in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 198, 1254–1267 (2018).
pubmed: 29750543 pmcid: 6290938
Owen, C. A. Leukocyte cell surface proteinases: regulation of expression, functions, and mechanisms of surface localization. Int J. Biochem. Cell Biol. 40, 1246–1272 (2008).
pubmed: 18329945 pmcid: 2425676
Dreymueller, D., Uhlig, S. & Ludwig, A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L325–L343 (2015).
pubmed: 25480335
Seals, D. F. & Courtneidge, S. A. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17, 7–30 (2003).
pubmed: 12514095
Martin, J., Eynstone, L. V., Davies, M., Williams, J. D. & Steadman, R. The role of ADAM 15 in glomerular mesangial cell migration. J. Biol. Chem. 277, 33683–33689 (2002).
pubmed: 12091380
Maretzky, T. et al. Characterization of the catalytic activity of the membrane-anchored metalloproteinase ADAM15 in cell-based assays. Biochem. J. 420, 105–113 (2009).
pubmed: 19207106
Herren, B. et al. ADAM15 overexpression in NIH3T3 cells enhances cell-cell interactions. Exp. Cell Res. 271, 152–160 (2001).
pubmed: 11697891
Maeno, T. et al. CD8+ T cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J. Immunol. 178, 8090–8096 (2007).
pubmed: 17548647
Grumelli, S. et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 1, e8 (2004).
pubmed: 15526056 pmcid: 523885
Hodge, S., Hodge, G., Nairn, J., Holmes, M. & Reynolds, P. N. Increased airway granzyme b and perforin in current and ex-smoking COPD subjects. COPD 3, 179–187 (2006).
pubmed: 17361498
Horiuchi, K. et al. Potential role for ADAM15 in pathological neovascularization in mice. Mol. Cell Biol. 23, 5614–5624 (2003).
pubmed: 12897135 pmcid: 166329
Hiemstra, P. S. Altered macrophage function in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 10, S180–S185 (2013).
pubmed: 24313770
Marriott, H. M. et al. Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. J. Clin. Invest. 115, 359–368 (2005).
pubmed: 15650769 pmcid: 544034
Bosque, A., Marzo, I., Naval, J. & Anel, A. Apoptosis by IL-2 deprivation in human CD8+ T cell blasts predominates over death receptor ligation, requires Bim expression and is associated with Mcl-1 loss. Mol. Immunol. 44, 1446–1453 (2007).
pubmed: 16806475
Fulda, S. Synthetic lethality by co-targeting mitochondrial apoptosis and PI3K/Akt/mTOR signaling. Mitochondrion 19(Pt A), 85–87 (2014).
pubmed: 24780492
Melgert, B. N. et al. Short-term smoke exposure attenuates ovalbumin-induced airway inflammation in allergic mice. Am. J. Respir. Cell Mol. Biol. 30, 880–885 (2004).
pubmed: 14722223
Khammas, H. et al. Characterisation of the human ADAM15 promoter. Nephron Exp. Nephrol. 118, e27–e38 (2011).
pubmed: 21196774
Mercer, B. A., Wallace, A. M., Brinckerhoff, C. E. & D’Armiento, J. M. Identification of a cigarette smoke-responsive region in the distal MMP-1 promoter. Am. J. Respir. Cell Mol. Biol. 40, 4–12 (2009).
pubmed: 18617682
Aporntewan, C. et al. Gene hunting of the Genetic Analysis Workshop 16 rheumatoid arthritis data using rough set theory. BMC Proc. 3(Suppl 7), S126 (2009).
pubmed: 20017992 pmcid: 2795899
Osei, E. T. et al. Unravelling the complexity of COPD by microRNAs: it’s a small world after all. Eur. Respir. J. 46, 807–818 (2015).
pubmed: 26250493
Chatterjee, V. et al. MicroRNA-147b regulates vascular endothelial barrier function by targeting ADAM15 expression. PLoS ONE 9, e110286 (2014).
pubmed: 25333931 pmcid: 4198252
Ryter, S. W., Alam, J. & Choi, A. M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583–650 (2006).
pubmed: 16601269
Liu, X., Wei, J., Peng, D. H., Layne, M. D. & Yet, S. F. Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes 54, 778–784 (2005).
pubmed: 15734856
Richards, J. A., Wigmore, S. J. & Devey, L. R. Heme oxygenase system in hepatic ischemia-reperfusion injury. World J. Gastroenterol. 16, 6068–6078 (2010).
pubmed: 21182221 pmcid: 3012573
Sunderram, J. et al. Heme oxygenase-1-dependent central cardiorespiratory adaptations to chronic intermittent hypoxia in mice. J. Appl. Physiol. 121, 944–952 (2016).
pubmed: 27609199
Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).
pubmed: 9302297
Owen, C. A. Proteinases and oxidants as targets in the treatment of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2, 373–385 (2005). discussion 394-375.
pubmed: 16267366 pmcid: 2713328
Schmitt, E. G. et al. IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy. J. Immunol. 189, 5638–5648 (2012).
pubmed: 23125413 pmcid: 3537488
Barcelo, B. et al. Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur. Respir. J. 31, 555–562 (2008).
pubmed: 18057064
Schwarz, J. B. et al. Novel role of the CXC chemokine receptor 3 in inflammatory response to arterial injury: involvement of mTORC1. Circ. Res. 104, 189–200 (2009).
pubmed: 19059841
Poghosyan, Z. et al. Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases. J. Biol. Chem. 277, 4999–5007 (2002).
pubmed: 11741929
Bohm, B. B., Freund, I., Krause, K., Kinne, R. W. & Burkhardt, H. ADAM15 adds to apoptosis resistance of synovial fibroblasts by modulating focal adhesion kinase signaling. Arthritis Rheum. 65, 2826–2834 (2013).
pubmed: 23918525
Churg, A. et al. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax 62, 706–713 (2007).
pubmed: 17311841 pmcid: 2117295
Dong, D. D., Zhou, H. & Li, G. ADAM15 targets MMP9 activity to promote lung cancer cell invasion. Oncol. Rep. 34, 2451–2460 (2015).
pubmed: 26323669
Fehringer, G. et al. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations. Cancer Res. 76, 5103–5114 (2016).
pubmed: 27197191 pmcid: 5010493
Craig, V. J. et al. Profibrotic activities for matrix metalloproteinase-8 during bleomycin-mediated lung injury. J. Immunol. 190, 4283–4296 (2013).
pubmed: 23487425 pmcid: 3639121
Knolle, M. D. et al. Adam8 limits the development of allergic airway inflammation in mice. J. Immunol. 190, 6434–6449 (2013).
pubmed: 23670189 pmcid: 3679335
Laucho-Contreras, M. E., Taylor, K. L., Mahadeva, R., Boukedes, S. S. & Owen, C. A. Automated measurement of pulmonary emphysema and small airway remodeling in cigarette smoke-exposed mice. J. Vis. Exp. https://doi.org/10.3791/52236 (2015).
Wang, X. et al. Tissue inhibitor of metalloproteinase-1 promotes polymorphonuclear neutrophil (PMN) pericellular proteolysis by anchoring matrix metalloproteinase-8 and -9 to PMN surfaces. J. Immunol. 202, 3267–3281 (2019).
pubmed: 31019060 pmcid: 7347292
Quintero, P. A., Knolle, M. D., Cala, L. F., Zhuang, Y. & Owen, C. A. Matrix metalloproteinase-8 inactivates macrophage inflammatory protein-1 alpha to reduce acute lung inflammation and injury in mice. J. Immunol. 184, 1575–1588 (2010).
pubmed: 20042585
Owen, C. A., Hu, Z., Lopez-Otin, C. & Shapiro, S. D. Membrane-bound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. J. Immunol. 172, 7791–7803 (2004).
pubmed: 15187163
Lee, H., Zhang, D., Zhu, Z., Dela Cruz, C. S. & Jin, Y. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci. Rep. 6, 35250 (2016).
pubmed: 27731391 pmcid: 5059671
Zhang, D. et al. A potential role of microvesicle-containing miR-223/142 in lung inflammation. Thorax 74, 865–874 (2019).
pubmed: 31331947 pmcid: 7036165

Auteurs

Xiaoyun Wang (X)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA.

Joselyn Rojas-Quintero (J)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Duo Zhang (D)

Program in Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA, 30901, USA.
Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.

Takahiro Nakajima (T)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Katherine H Walker (KH)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Hong Yong Peh (HY)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.

Yuhong Li (Y)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Quynh-Anh Fucci (QA)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Yohannes Tesfaigzi (Y)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Caroline A Owen (CA)

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. cowenusa@yahoo.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH