H2A.Z is dispensable for both basal and activated transcription in post-mitotic mouse muscles.
Journal
Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011
Informations de publication
Date de publication:
21 05 2020
21 05 2020
Historique:
accepted:
29
02
2020
revised:
06
02
2020
received:
14
11
2019
pubmed:
9
4
2020
medline:
9
9
2020
entrez:
9
4
2020
Statut:
ppublish
Résumé
While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.
Identifiants
pubmed: 32266374
pii: 5816854
doi: 10.1093/nar/gkaa157
pmc: PMC7229818
doi:
Substances chimiques
Chromatin
0
H2az1 protein, mouse
0
Histones
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4601-4613Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
Références
EMBO J. 2010 Jun 16;29(12):2014-25
pubmed: 20473270
J Histochem Cytochem. 1999 Nov;47(11):1375-84
pubmed: 10544211
Biochem Cell Biol. 2009 Feb;87(1):7-17
pubmed: 19234519
Cell. 2005 Oct 21;123(2):219-31
pubmed: 16239141
Nat Commun. 2019 Jul 18;10(1):3187
pubmed: 31320633
Genome Biol. 2008;9(9):R137
pubmed: 18798982
Genome Res. 2017 Jun;27(6):934-946
pubmed: 28348165
Sci Rep. 2019 Jun 27;9(1):9354
pubmed: 31249361
Nucleic Acids Res. 2018 Oct 12;46(18):9353-9366
pubmed: 30007360
Bioinformatics. 2015 Jun 15;31(12):2032-4
pubmed: 25697820
Genome Res. 2015 Dec;25(12):1873-85
pubmed: 26560631
Nat Struct Mol Biol. 2012 Nov;19(11):1076-83
pubmed: 23085713
Mol Cell Biol. 1991 May;11(5):2416-24
pubmed: 2017161
Genes Dev. 2015 Jul 1;29(13):1377-92
pubmed: 26159997
Nucleic Acids Res. 2018 Sep 19;46(16):8197-8215
pubmed: 29986055
J Neurosci. 2017 Mar 29;37(13):3465-3477
pubmed: 28213440
Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5
pubmed: 27079975
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90
pubmed: 16344463
Subcell Biochem. 2007;41:71-89
pubmed: 17484124
Nat Rev Mol Cell Biol. 2017 Feb;18(2):115-126
pubmed: 27924075
Nat Struct Mol Biol. 2016 Apr;23(4):309-16
pubmed: 26974126
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Genome Biol. 2014;15(12):550
pubmed: 25516281
Nucleus. 2013 Nov-Dec;4(6):431-8
pubmed: 24213378
Biochem Cell Biol. 2017 Aug;95(4):491-499
pubmed: 28177753
Nucleic Acids Res. 1999 Oct 1;27(19):e27
pubmed: 10481039
Genome Res. 2015 Jun;25(6):872-83
pubmed: 25778913
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):525-30
pubmed: 17194760
J Biol Chem. 2015 May 22;290(21):13234-49
pubmed: 25839232
Genes (Basel). 2015 Jul 23;6(3):685-713
pubmed: 26213973
J Histochem Cytochem. 2003 Jul;51(7):853-63
pubmed: 12810836
Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47
pubmed: 22722606
J Cachexia Sarcopenia Muscle. 2019 Feb;10(1):35-53
pubmed: 30461220
Mol Cell Biol. 2015 Dec;35(24):4110-20
pubmed: 26416879
Mol Cell Biol. 2007 Sep;27(18):6457-68
pubmed: 17636032
Mol Cell. 2019 May 2;74(3):609-621.e6
pubmed: 30922843
Genome Biol. 2010;11(10):R106
pubmed: 20979621
Curr Biol. 2001 Aug 7;11(15):1183-7
pubmed: 11516949
Nat Struct Mol Biol. 2004 Jul;11(7):650-5
pubmed: 15195148
Bioinformatics. 2009 May 1;25(9):1105-11
pubmed: 19289445
Cell. 2007 May 18;129(4):823-37
pubmed: 17512414
Nat Methods. 2013 Dec;10(12):1213-8
pubmed: 24097267
BMC Biol. 2009 Dec 14;7:86
pubmed: 20003410
Nat Neurosci. 2005 Mar;8(3):313-21
pubmed: 15711539
Nat Struct Mol Biol. 2010 Dec;17(12):1500-7
pubmed: 21057526
Nucleic Acids Res. 2019 Sep 19;47(16):8399-8409
pubmed: 31219579
Physiol Genomics. 2006 Mar 13;25(1):60-74
pubmed: 16380408
Eur J Neurosci. 2005 Jan;21(2):577-80
pubmed: 15673457
Sci Data. 2019 May 20;6(1):65
pubmed: 31110271
J Cell Sci. 2014 Aug 1;127(Pt 15):3347-59
pubmed: 24906798
Nat Rev Genet. 2014 Apr;15(4):259-71
pubmed: 24614311
Nature. 2014 Jan 30;505(7485):648-53
pubmed: 24463511
Brief Funct Genomic Proteomic. 2006 Sep;5(3):228-43
pubmed: 16772274
Cancers (Basel). 2018 Feb 27;10(3):
pubmed: 29495465
Cell Rep. 2017 Oct 24;21(4):943-952
pubmed: 29069602
Curr Opin Genet Dev. 2016 Apr;37:82-89
pubmed: 26826795
BMC Evol Biol. 2009 Feb 04;9:31
pubmed: 19193230
J Cell Biol. 2009 Dec 14;187(6):859-74
pubmed: 20008564
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
EMBO J. 2003 Apr 1;22(7):1599-607
pubmed: 12660166
Nat Rev Mol Cell Biol. 2005 Feb;6(2):139-49
pubmed: 15688000
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Dev Neurobiol. 2009 May;69(6):401-6
pubmed: 19263419
Cell Metab. 2008 Nov;8(5):411-24
pubmed: 19046572
Nature. 2020 Jan;577(7791):576-581
pubmed: 31875854