The effects of electroporation buffer composition on cell viability and electro-transfection efficiency.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 02 2020
20 02 2020
Historique:
received:
05
06
2019
accepted:
03
02
2020
entrez:
22
2
2020
pubmed:
23
2
2020
medline:
13
11
2020
Statut:
epublish
Résumé
Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties. In this work, the effects of buffer composition on cell viability and eTE were systematically explored for plasmid DNA encoding green fluorescent protein following electroporation of 3T3 fibroblasts. A HEPES-based buffer was used in conjunction with various salts and sugars to modulate conductivity and osmolality, respectively. Pulse applications were chosen to maintain constant applied electrical energy (J) or total charge flux (C/m
Identifiants
pubmed: 32080269
doi: 10.1038/s41598-020-59790-x
pii: 10.1038/s41598-020-59790-x
pmc: PMC7033148
doi:
Substances chimiques
Buffers
0
Adenosine Triphosphatases
EC 3.6.1.-
Magnesium
I38ZP9992A
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
3053Références
PLoS One. 2011;6(6):e20923
pubmed: 21695134
Bioelectrochemistry. 2010 Oct;79(2):265-71
pubmed: 20580903
Pharmacol Res. 2000 Jan;41(1):1-7
pubmed: 10600263
Am Heart J. 1991 May;121(5):1513-21
pubmed: 2017983
Anal Chem. 2006 Dec 1;78(23):7918-25
pubmed: 17186633
Cytotechnology. 2006 Jul;51(3):141-8
pubmed: 19002884
Eur J Biochem. 1998 Jun 1;254(2):382-8
pubmed: 9660195
Biochim Biophys Acta. 2015 Aug;1848(8):1706-14
pubmed: 25911207
Pediatr Res. 2004 May;55(5):734-7
pubmed: 14764909
Nature. 2018 Jul;559(7714):405-409
pubmed: 29995861
Trends Biotechnol. 2010 Jun;28(6):281-90
pubmed: 20434785
Biochim Biophys Acta. 2013 Apr;1828(4):1322-8
pubmed: 23313458
Biochim Biophys Acta. 2009 Apr;1787(4):207-20
pubmed: 19388138
J Gene Med. 2013 May;15(5):169-81
pubmed: 23564663
Curr Protoc Mol Biol. 2018 Jan 16;121:9.3.1-9.3.13
pubmed: 29337375
Nucleic Acids Res. 1994 Feb 11;22(3):540
pubmed: 8127697
Biochim Biophys Acta. 1996 Oct 23;1284(2):143-52
pubmed: 8914578
Biophys J. 2014 Feb 18;106(4):801-12
pubmed: 24559983
Biotechnol J. 2009 Oct;4(10):1488-96
pubmed: 19830717
Mol Ther. 2017 Mar 1;25(3):803-815
pubmed: 28129959
Nucleic Acids Res. 2002 Apr 1;30(7):1670-8
pubmed: 11917029
Cell Mol Biol Lett. 2014 Mar;19(1):65-76
pubmed: 24415057
Annu Rev Biophys. 2019 May 6;48:63-91
pubmed: 30786231
Bioelectrochemistry. 2011 Aug;82(1):10-21
pubmed: 21621484
J Gene Med. 2013 Feb;15(2):65-77
pubmed: 23355455
Nat Biomed Eng. 2017;1:
pubmed: 28932622
Curr Gene Ther. 2016;16(2):98-129
pubmed: 27029943
Lett Appl Microbiol. 2009 Mar;48(3):349-54
pubmed: 19207855
Anal Bioanal Chem. 2010 Aug;397(8):3173-8
pubmed: 20549496
Biochim Biophys Acta. 2013 Feb;1828(2):461-70
pubmed: 22954677
Technol Cancer Res Treat. 2002 Oct;1(5):341-50
pubmed: 12625759
Biophys J. 2009 May 6;96(9):3753-61
pubmed: 19413981
IEEE Trans Biomed Eng. 2011 Nov;58(11):3279-88
pubmed: 21900067
Nat Nanotechnol. 2017 Oct;12(10):974-979
pubmed: 28785092