Structures of influenza A virus RNA polymerase offer insight into viral genome replication.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2019
Historique:
received: 12 03 2019
accepted: 07 08 2019
pubmed: 6 9 2019
medline: 26 3 2020
entrez: 6 9 2019
Statut: ppublish

Résumé

Influenza A viruses are responsible for seasonal epidemics, and pandemics can arise from the transmission of novel zoonotic influenza A viruses to humans

Identifiants

pubmed: 31485076
doi: 10.1038/s41586-019-1530-7
pii: 10.1038/s41586-019-1530-7
pmc: PMC6795553
mid: EMS83961
doi:

Substances chimiques

Single-Domain Antibodies 0
RNA-Dependent RNA Polymerase EC 2.7.7.48

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

287-290

Subventions

Organisme : Wellcome Trust
ID : 200835/Z/16/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R009945/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K000241/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 200835
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17137
Pays : United Kingdom

Références

Taubenberger, J. K. & Kash, J. C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7, 440–451 (2010).
doi: 10.1016/j.chom.2010.05.009
Mostafa, A., Abdelwhab, E. M., Mettenleiter, T. C. & Pleschka, S. Zoonotic potential of influenza A viruses: a comprehensive overview. Viruses 10, 497 (2018).
doi: 10.3390/v10090497
Pflug, A., Lukarska, M., Resa-Infante, P., Reich, S. & Cusack, S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res. 234, 103–117 (2017).
doi: 10.1016/j.virusres.2017.01.013
te Velthuis, A. J. & Fodor, E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14, 479–493 (2016).
doi: 10.1038/nrmicro.2016.87
Walker, A. P. & Fodor, E. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol. 27, 398–407 (2019).
doi: 10.1016/j.tim.2018.12.013
Pflug, A., Guilligay, D., Reich, S. & Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516, 355–360 (2014).
doi: 10.1038/nature14008
Jorba, N., Coloma, R. & Ortín, J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog. 5, e1000462 (2009).
doi: 10.1371/journal.ppat.1000462
York, A., Hengrung, N., Vreede, F. T., Huiskonen, J. T. & Fodor, E. Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proc. Natl Acad. Sci. USA 110, E4238–E4245 (2013).
doi: 10.1073/pnas.1315068110
Jorba, N., Area, E. & Ortín, J. Oligomerization of the influenza virus polymerase complex in vivo. J. Gen. Virol. 89, 520–524 (2008).
doi: 10.1099/vir.0.83387-0
Moeller, A., Kirchdoerfer, R. N., Potter, C. S., Carragher, B. & Wilson, I. A. Organization of the influenza virus replication machinery. Science 338, 1631–1634 (2012).
doi: 10.1126/science.1227270
Chang, S. et al. Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 Å resolution. Mol. Cell 57, 925–935 (2015).
doi: 10.1016/j.molcel.2014.12.031
Hara, K., Schmidt, F. I., Crow, M. & Brownlee, G. G. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J. Virol. 80, 7789–7798 (2006).
doi: 10.1128/JVI.00600-06
Mänz, B., Brunotte, L., Reuther, P. & Schwemmle, M. Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat. Commun. 3, 802 (2012).
doi: 10.1038/ncomms1804
Deng, T., Vreede, F. T. & Brownlee, G. G. Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J. Virol. 80, 2337–2348 (2006).
doi: 10.1128/JVI.80.5.2337-2348.2006
Hengrung, N. et al. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527, 114–117 (2015).
doi: 10.1038/nature15525
Thierry, E. et al. Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol. Cell 61, 125–137 (2016).
doi: 10.1016/j.molcel.2015.11.016
Serna Martin, I. et al. A mechanism for the activation of the influenza virus transcriptase. Mol. Cell 70, 1101–1110 (2018).
doi: 10.1016/j.molcel.2018.05.011
Reich, S. et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516, 361–366 (2014).
doi: 10.1038/nature14009
Gerlach, P., Malet, H., Cusack, S. & Reguera, J. Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell 161, 1267–1279 (2015).
doi: 10.1016/j.cell.2015.05.006
Oymans, J. & Te Velthuis, A. J. W. A mechanism for priming and realignment during influenza A virus replication. J. Virol. 92, e01773-17 (2018).
pubmed: 29118119 pmcid: 5774886
te Velthuis, A. J., Robb, N. C., Kapanidis, A. N. & Fodor, E. The role of the priming loop in influenza A virus RNA synthesis. Nat. Microbiol. 1, 16029 (2016).
doi: 10.1038/nmicrobiol.2016.29
Killip, M. J., Fodor, E. & Randall, R. E. Influenza virus activation of the interferon system. Virus Res. 209, 11–22 (2015).
doi: 10.1016/j.virusres.2015.02.003
te Velthuis, A. J. W. et al. Mini viral RNAs act as innate immune agonists during influenza virus infection. Nat. Microbiol. 3, 1234–1242 (2018).
doi: 10.1038/s41564-018-0240-5
Bieniossek, C., Imasaki, T., Takagi, Y. & Berger, I. MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem. Sci. 37, 49–57 (2012).
doi: 10.1016/j.tibs.2011.10.005
Weissmann, F. et al. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc. Natl Acad. Sci. USA 113, E2564–E2569 (2016).
doi: 10.1073/pnas.1604935113
Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protocols 9, 674–693 (2014).
doi: 10.1038/nprot.2014.039
Walter, T. S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallogr. D 61, 651–657 (2005).
doi: 10.1107/S0907444905007808
Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).
doi: 10.1107/S0907444909047337
Tickle, I. J. et al. STARANISO.  http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi (2018).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D 68, 368–380 (2012).
doi: 10.1107/S0907444911056058
Rasmussen, S. G. et al. Crystal structure of the β
doi: 10.1038/nature10361
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
doi: 10.1016/j.jsb.2015.11.003
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
doi: 10.1016/j.jsb.2012.09.006
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
doi: 10.1093/nar/gkm216
Shkumatov, A. V. & Strelkov, S. V. DATASW, a tool for HPLC-SAXS data analysis. Acta Crystallogr. D 71, 1347–1350 (2015).
doi: 10.1107/S1399004715007154
Deng, T., Sharps, J., Fodor, E. & Brownlee, G. G. In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J. Virol. 79, 8669–8674 (2005).
doi: 10.1128/JVI.79.13.8669-8674.2005
Fodor, E. et al. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989–9001 (2002).
doi: 10.1128/JVI.76.18.8989-9001.2002
Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682 (1999).
pubmed: 10516084 pmcid: 113010
Fodor, E. & Smith, M. The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J. Virol. 78, 9144–9153 (2004).
doi: 10.1128/JVI.78.17.9144-9153.2004
Vreede, F. T., Jung, T. E. & Brownlee, G. G. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J. Virol. 78, 9568–9572 (2004).
doi: 10.1128/JVI.78.17.9568-9572.2004
Nilsson-Payant, B. E., Sharps, J., Hengrung, N. & Fodor, E. The surface-exposed PA
doi: 10.1128/JVI.00687-18
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
doi: 10.1038/nmeth.2089
Robb, N. C., Smith, M., Vreede, F. T. & Fodor, E. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J. Gen. Virol. 90, 1398–1407 (2009).
doi: 10.1099/vir.0.009639-0
Reich, S., Guilligay, D. & Cusack, S. An in vitro fluorescence based study of initiation of RNA synthesis by influenza B polymerase. Nucleic Acids Res. 45, 3353–3368 (2017).
pubmed: 28126917 pmcid: 5399792
Bussey, K. A. et al. PA residues in the 2009 H1N1 pandemic influenza virus enhance avian influenza virus polymerase activity in mammalian cells. J. Virol. 85, 7020–7028 (2011).
doi: 10.1128/JVI.00522-11
Hu, J. et al. The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. J. Virol. 87, 2660–2672 (2013).
doi: 10.1128/JVI.02891-12
Ilyushina, N. A. et al. Adaptation of pandemic H1N1 influenza viruses in mice. J. Virol. 84, 8607–8616 (2010).
doi: 10.1128/JVI.00159-10
Kamiki, H. et al. A PB1-K577E mutation in H9N2 influenza virus increases polymerase activity and pathogenicity in mice. Viruses 10, 653 (2018).
doi: 10.3390/v10110653
Lee, C. Y. et al. Novel mutations in avian PA in combination with an adaptive mutation in PR8 NP exacerbate the virulence of PR8-derived recombinant influenza A viruses in mice. Vet. Microbiol. 221, 114–121 (2018).
doi: 10.1016/j.vetmic.2018.05.026
Liedmann, S. et al. New virulence determinants contribute to the enhanced immune response and reduced virulence of an influenza A virus A/PR8/34 variant. J. Infect. Dis. 209, 532–541 (2014).
doi: 10.1093/infdis/jit463
Mehle, A., Dugan, V. G., Taubenberger, J. K. & Doudna, J. A. Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J. Virol. 86, 1750–1757 (2012).
doi: 10.1128/JVI.06203-11
Neumann, G., Macken, C. A. & Kawaoka, Y. Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J. Virol. 88, 4877–4896 (2014).
doi: 10.1128/JVI.00107-14
Peng, X. et al. Amino acid substitutions HA A150V, PA A343T, and PB2 E627K increase the virulence of H5N6 influenza virus in mice. Front. Microbiol. 9, 453 (2018).
doi: 10.3389/fmicb.2018.00453
Slaine, P. D. et al. Adaptive mutations in influenza A/California/07/2009 enhance polymerase activity and infectious virion production. Viruses 10, 272 (2018).
doi: 10.3390/v10050272
Wu, R. et al. Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Vet. Microbiol. 138, 85–91 (2009).
doi: 10.1016/j.vetmic.2009.03.010
Xu, G. et al. Prevailing PA mutation K356R in avian influenza H9N2 virus increases mammalian replication and pathogenicity. J. Virol. 90, 8105–8114 (2016).
doi: 10.1128/JVI.00883-16
Yamaji, R. et al. Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus. J. Virol. 89, 4117–4125 (2015).
doi: 10.1128/JVI.03532-14
Zhang, Z. et al. Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infect. Genet. Evol. 11, 1790–1797 (2011).
doi: 10.1016/j.meegid.2011.07.025
Zhong, G. et al. Mutations in the PA protein of avian H5N1 influenza viruses affect polymerase activity and mouse virulence. J. Virol. 92, e01557-17 (2018).
pubmed: 29212927 pmcid: 5790930
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).
doi: 10.1038/nmeth.4347
Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat. Commun. 8, 629 (2017).
doi: 10.1038/s41467-017-00782-3

Auteurs

Haitian Fan (H)

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.

Alexander P Walker (AP)

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.

Loïc Carrique (L)

Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Jeremy R Keown (JR)

Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Itziar Serna Martin (I)

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Dimple Karia (D)

Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Jane Sharps (J)

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.

Narin Hengrung (N)

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
Francis Crick Institute, London, UK.

Els Pardon (E)

VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.

Jan Steyaert (J)

Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.

Jonathan M Grimes (JM)

Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK. jonathan@strubi.ox.ac.uk.
Diamond Light Source, Didcot, UK. jonathan@strubi.ox.ac.uk.

Ervin Fodor (E)

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK. ervin.fodor@path.ox.ac.uk.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Cryoelectron Microscopy Algorithms Image Processing, Computer-Assisted Consensus Software

Classifications MeSH