A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
22 Oct 2024
Historique:
received: 27 06 2023
accepted: 18 09 2024
medline: 23 10 2024
pubmed: 23 10 2024
entrez: 22 10 2024
Statut: aheadofprint

Résumé

Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn's disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases.

Identifiants

pubmed: 39438660
doi: 10.1038/s41590-024-01994-8
pii: 10.1038/s41590-024-01994-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Brennan, F. M., Jackson, A., Chantry, D., Maini, R. & Feldmann, M. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244–247 (1989).
doi: 10.1016/S0140-6736(89)90430-3 pubmed: 2569055
Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).
doi: 10.1016/S0140-6736(94)90628-9 pubmed: 7934491
Derkx, B. et al. Tumour-necrosis-factor antibody treatment in Crohn’s disease. Lancet 342, 173–174 (1993).
doi: 10.1016/0140-6736(93)91375-V pubmed: 8101267
Ding, N. S., Hart, A. & De Cruz, P. Systematic review: predicting and optimising response to anti-TNF therapy in Crohn’s disease: algorithm for practical management. Aliment Pharm. Ther. 43, 30–51 (2016).
doi: 10.1111/apt.13445
Weinblatt, M. E. et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).
doi: 10.1002/art.10697 pubmed: 12528101
Rutgeerts, P. et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med 353, 2462–2476 (2005).
doi: 10.1056/NEJMoa050516 pubmed: 16339095
Ferrante, M. et al. Predictors of early response to infliximab in patients with ulcerative colitis. Inflamm. Bowel Dis. 13, 123–128 (2007).
doi: 10.1002/ibd.20054 pubmed: 17206703
Uzzan, M. et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat. Med. 28, 766–779 (2022).
doi: 10.1038/s41591-022-01680-y pubmed: 35190725 pmcid: 9107072
Corridoni, D. et al. Single-cell atlas of colonic CD8
doi: 10.1038/s41591-020-1003-4 pubmed: 32747828
Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386 (2018).
doi: 10.1016/j.cell.2018.08.067 pubmed: 30270042 pmcid: 6176871
Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49–55 (2019).
doi: 10.1038/s41586-019-0992-y pubmed: 30814735
Huang, B. et al. Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways. Cell 179, 1160–1176 (2019).
doi: 10.1016/j.cell.2019.10.027 pubmed: 31730855
Martin, J. C. et al. Single-cell analysis of crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508 (2019).
doi: 10.1016/j.cell.2019.08.008 pubmed: 31474370 pmcid: 7060942
Smillie, C. S. et al. Intra- and Inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730 (2019).
doi: 10.1016/j.cell.2019.06.029 pubmed: 31348891 pmcid: 6662628
Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).
doi: 10.1038/s41590-019-0378-1 pubmed: 31061532 pmcid: 6602051
Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).
doi: 10.1038/s41586-019-1263-7 pubmed: 31142839 pmcid: 6690841
Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).
doi: 10.1038/s41586-020-2222-z pubmed: 32499639 pmcid: 7841716
Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).
doi: 10.1038/s41591-020-0939-8 pubmed: 32601335
Jaeger, N. et al. Single-cell analyses of Crohn’s disease tissues reveal intestinal intraepithelial T cells heterogeneity and altered subset distributions. Nat. Commun. 12, 1–12 (2021).
doi: 10.1038/s41467-021-22164-6
Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616 (2023).
doi: 10.1038/s41586-023-06708-y pubmed: 37938773 pmcid: 10651487
West, N. R. et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med 23, 579–589 (2017).
doi: 10.1038/nm.4307 pubmed: 28368383 pmcid: 5420447
Aterido, A. et al. A combined transcriptomic and genomic analysis identifies a gene signature associated with the response to anti-TNF therapy in rheumatoid arthritis. Front Immunol. 10, 1459 (2019).
doi: 10.3389/fimmu.2019.01459 pubmed: 31312201 pmcid: 6614444
Gaujoux, R. et al. Cell-centred meta-analysis reveals baseline predictors of anti-TNFα non-response in biopsy and blood of patients with IBD. Gut 68, 604–614 (2019).
doi: 10.1136/gutjnl-2017-315494 pubmed: 29618496
Arijs, I. et al. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLoS One 4, e7984 (2009).
doi: 10.1371/journal.pone.0007984 pubmed: 19956723 pmcid: 2776509
Belarif, L. et al. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J. Clin. Invest 129, 1910–1925 (2019).
doi: 10.1172/JCI121668 pubmed: 30939120 pmcid: 6486337
Haberman, Y. et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 10, 1–13 (2019).
doi: 10.1038/s41467-018-07841-3
Czarnewski, P. et al. Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nat. Commun. 10, 1–11 (2019).
doi: 10.1038/s41467-019-10769-x
Friedrich, M. et al. IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).
doi: 10.1038/s41591-021-01520-5 pubmed: 34675383 pmcid: 8604730
Aschenbrenner, D. et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut 70, 1023–1036 (2021).
doi: 10.1136/gutjnl-2020-321731 pubmed: 33037057
Argmann, C. et al. Biopsy and blood-based molecular biomarker of inflammation in IBD. Gut 72, 1271–1287 (2023).
doi: 10.1136/gutjnl-2021-326451 pubmed: 36109152
Frede, A. et al. B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity 55, 2236–2351 (2022).
doi: 10.1016/j.immuni.2022.11.002
Pham, D., Vincentz, J. W., Firulli, A. B. & Kaplan, M. H. Twist1 regulates Ifng expression in Th1 cells by interfering with Runx3 function. J. Immunol. 189, 832–840 (2012).
doi: 10.4049/jimmunol.1200854 pubmed: 22685315
Pham, D. et al. The transcription factor Twist1 limits T helper 17 and T follicular helper cell development by repressing the gene encoding the interleukin-6 receptor α chain. J. Biol. Chem. 288, 27423 (2013).
doi: 10.1074/jbc.M113.497248 pubmed: 23935104 pmcid: 3779737
Walmsley, R. S., Ayres, R. C. S., Pounder, R. E. & Allan, R. N. A simple clinical colitis activity index. Gut 43, 29–32 (1998).
doi: 10.1136/gut.43.1.29 pubmed: 9771402 pmcid: 1727189
Harvey, R. F. & Bradshaw, J. M. A simple index of Crohn’s-disease activity. Lancet 1, 514 (1980).
doi: 10.1016/S0140-6736(80)92767-1 pubmed: 6102236
Travis, S. P. L. et al. Developing an instrument to assess the endoscopic severity of ulcerative colitis: the Ulcerative Colitis Endoscopic Index of Severity (UCEIS). Gut 61, 535–542 (2012).
doi: 10.1136/gutjnl-2011-300486 pubmed: 21997563
Marchal-Bressenot, A. et al. Development and validation of the Nancy histological index for UC. Gut 66, 43–49 (2017).
doi: 10.1136/gutjnl-2015-310187 pubmed: 26464414
De Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).
doi: 10.1038/ng.3760 pubmed: 28067908 pmcid: 5289481
Zhou, Q. et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91, 713–720 (2012).
doi: 10.1016/j.ajhg.2012.08.006 pubmed: 23000145 pmcid: 3484656
Yu, P. et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase Cγ2 that specifically increases external Ca
doi: 10.1016/j.immuni.2005.01.018 pubmed: 15845450
Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).
doi: 10.1038/s41586-021-03852-1 pubmed: 34497389 pmcid: 8426186
Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 12, 49–62 (2015).
doi: 10.1038/nrrheum.2015.169 pubmed: 26656660 pmcid: 4809675
Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 1–11 (2017).
Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).
doi: 10.1038/s41586-022-05272-1 pubmed: 36171287 pmcid: 9630141
Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. Elife 8, e43803 (2019).
Krausgruber, T. et al. Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 56, 289–306 (2023).
doi: 10.1016/j.immuni.2023.01.014 pubmed: 36750099 pmcid: 9942876
Stankey, C. T. et al. A disease-associated gene desert directs macrophage inflammation through ETS2. Nature 630, 447–456 (2024).
doi: 10.1038/s41586-024-07501-1 pubmed: 38839969 pmcid: 11168933
Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).
doi: 10.1038/s41577-021-00540-z pubmed: 33911232
Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).
doi: 10.1016/j.medj.2022.05.002 pubmed: 35649411
Rivellese, F. et al. Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat. Med. 28, 1256–1268 (2022).
doi: 10.1038/s41591-022-01789-0 pubmed: 35589854 pmcid: 9205785
Mayer, A. T. et al. A tissue atlas of ulcerative colitis revealing evidence of sex-dependent differences in disease-driving inflammatory cell types and resistance to TNF inhibitor therapy. Sci. Adv. 9, eadd1166 (2023).
doi: 10.1126/sciadv.add1166 pubmed: 36662860 pmcid: 9858501
Le Berre, C., Ricciuto, A., Peyrin-Biroulet, L. & Turner, D. Evolving short- and long-term goals of management of inflammatory bowel diseases: getting it right, making it last. Gastroenterology 162, 1424–1438 (2022).
doi: 10.1053/j.gastro.2021.09.076 pubmed: 34995529
Mitsialis, V. et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and crohn’s disease. Gastroenterology 159, 591–608 (2020).
doi: 10.1053/j.gastro.2020.04.074 pubmed: 32428507
Schmitt, H. et al. Expansion of IL-23 receptor bearing TNFR2
doi: 10.1136/gutjnl-2017-315671 pubmed: 29848778
Koelink, P. J. et al. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut 69, 1053–1063 (2020).
doi: 10.1136/gutjnl-2019-318264 pubmed: 31506328
Vos, A. C. W. et al. Anti–tumor necrosis factor-α antibodies induce regulatory macrophages in an Fc region-dependent manner. Gastroenterology 140, 221–230 (2011).
doi: 10.1053/j.gastro.2010.10.008 pubmed: 20955706
Vos, A. C. W. et al. Regulatory macrophages induced by Infliximab are involved in healing in vivo and in vitro. Inflamm. Bowel Dis. 18, 401–408 (2012).
doi: 10.1002/ibd.21818 pubmed: 21936028
Heuberger, C. E. et al. MHC class II antigen presentation by intestinal epithelial cells fine-tunes bacteria-reactive CD4 T-cell responses. Mucosal Immunol. 17, 416–430(2024).
doi: 10.1016/j.mucimm.2023.05.001 pubmed: 37209960
McElrath, C. et al. Critical role of interferons in gastrointestinal injury repair. Nat. Commun. 12, 1–15 (2021).
doi: 10.1038/s41467-021-22928-0
Villablanca, E. J., Selin, K. & Hedin, C. R. H. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? Nat. Rev. Gastroenterol. Hepatol. 19, 493–507 (2022).
doi: 10.1038/s41575-022-00604-y pubmed: 35440774
Mo, A. et al. Stratification of risk of progression to colectomy in ulcerative colitis via measured and predicted gene expression. Am. J. Hum. Genet 108, 1765–1779 (2021).
doi: 10.1016/j.ajhg.2021.07.013 pubmed: 34450030 pmcid: 8456180
Conrad, C. et al. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat. Commun. 9, 1–11 (2017).
Friedberg, S. et al. Upadacitinib is effective and safe in both ulcerative colitis and Crohn’s disease: prospective real-world experience. Clin. Gastroenterol. Hepatol. 21, 1913–1923 (2023).
doi: 10.1016/j.cgh.2023.03.001 pubmed: 36898598 pmcid: 11016252
Lasa, J. S., Olivera, P. A., Danese, S. & Peyrin-Biroulet, L. Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: a systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 7, 161–170 (2022).
doi: 10.1016/S2468-1253(21)00377-0 pubmed: 34856198
Burr, N. E., Gracie, D. J., Black, C. J. & Ford, A. C. Efficacy of biological therapies and small molecules in moderate to severe ulcerative colitis: systematic review and network meta-analysis. Gut 71, 1976–1987 (2022).
doi: 10.1136/gutjnl-2021-326390
Parigi, T. L., Iacucci, M. & Ghosh, S. Blockade of IL-23: What is in the Pipeline? J. Crohns Colitis 16, ii64–ii72 (2022).
doi: 10.1093/ecco-jcc/jjab185 pubmed: 35553666 pmcid: 9097679
Peyrin-Biroulet, L. et al. Upadacitinib achieves clinical and endoscopic outcomes in crohn’s disease regardless of prior biologic exposure.Clin. Gastroenterol. Hepatol. 22, 2096–2106 (2024).
doi: 10.1016/j.cgh.2024.02.026 pubmed: 38492904
Olivera, P. A., Lasa, J. S., Bonovas, S., Danese, S. & Peyrin-Biroulet, L. Safety of Janus kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases: a systematic review and meta-analysis. Gastroenterology 158, 1554–1573 (2020).
doi: 10.1053/j.gastro.2020.01.001 pubmed: 31926171
Canales-Herrerias, P. et al. Gut-associated lymphoid tissue attrition associates with response to anti-α4β7 therapy in ulcerative colitis. Sci. Immunol. 9, 7549 (2024).
doi: 10.1126/sciimmunol.adg7549
Mennillo, E. et al. Single-cell and spatial multi-omics highlight effects of anti-integrin therapy across cellular compartments in ulcerative colitis. Nat. Commun. 15, 1–19 (2024).
doi: 10.1038/s41467-024-45665-6
Curion F., et al. Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis. Genome Biol. 25, 181 (2024).
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).
doi: 10.1016/j.cels.2018.11.005 pubmed: 30954476 pmcid: 6625319
Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).
doi: 10.1093/bioinformatics/btz625 pubmed: 31400197
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
doi: 10.1038/s41592-019-0619-0 pubmed: 31740819 pmcid: 6884693
Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol. 20, 1–12 (2019).
doi: 10.1186/s13059-019-1865-2
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
doi: 10.1186/s13059-014-0550-8
Borcherding, N. et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun. Biol. 4, 122 (2021).
doi: 10.1038/s42003-020-01625-6 pubmed: 33504936 pmcid: 7840906
Van Gestel, A. M. et al. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis: Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. Arthritis Rheum. 39, 34–40 (1996).
Ahern, D. J. et al. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 185, 916–938.e58 (2022).
doi: 10.1016/j.cell.2022.01.012
Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4
doi: 10.1126/scitranslmed.aaq0305 pubmed: 30333237 pmcid: 6448773
Nathan, A. et al. Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nat. Immunol. 22, 781–793 (2021).
doi: 10.1038/s41590-021-00933-1 pubmed: 34031617 pmcid: 8162307
Browaeys R., et al. MultiNicheNet: a flexible framework for differential cell-cell communication analysis from multi-sample multi-condition single-cell transcriptomics data. Preprint at https://www.biorxiv.org/content/10.1101/2023.06.13.544751v1 (2023).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
doi: 10.1093/nar/gkv007 pubmed: 25605792 pmcid: 4402510
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 1–13 (2015).
doi: 10.1186/s13059-015-0844-5
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2, 100141 (2021).
Klopfenstein, D. V. et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci. Rep. 8, 1–17 (2018).
doi: 10.1038/s41598-018-28948-z
Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752 (2021).
doi: 10.1016/j.cell.2021.08.003 pubmed: 34450029 pmcid: 8772395
Esmailian, P. & Jalili, M. Community detection in signed networks: the role of negative ties in different scales. Sci. Rep. 5, 14339 (2015).
doi: 10.1038/srep14339 pubmed: 26395815 pmcid: 4585820

Auteurs

Tom Thomas (T)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
Centre for Human Genetics, University of Oxford, Oxford, UK.
Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.

Matthias Friedrich (M)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.

Charlotte Rich-Griffin (C)

Centre for Human Genetics, University of Oxford, Oxford, UK.

Mathilde Pohin (M)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Devika Agarwal (D)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Julia Pakpoor (J)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
Centre for Human Genetics, University of Oxford, Oxford, UK.
Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.

Carl Lee (C)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Ruchi Tandon (R)

University College London Hospitals NHS Foundation Trust, London, UK.

Aniko Rendek (A)

Oxford University Hospitals NHS Foundation Trust, Oxford, UK.

Dominik Aschenbrenner (D)

Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.

Ashwin Jainarayanan (A)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Alexandru Voda (A)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Jacqueline H Y Siu (JHY)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Raphael Sanches-Peres (R)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Eloise Nee (E)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Dharshan Sathananthan (D)

University of Adelaide, Adelaide, Australia.
Lyell McEwin Hospital, Adelaide, Australia.

Dylan Kotliar (D)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Peter Todd (P)

Centre for Human Genetics, University of Oxford, Oxford, UK.

Maria Kiourlappou (M)

Centre for Human Genetics, University of Oxford, Oxford, UK.

Lisa Gartner (L)

Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.

Nicholas Ilott (N)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Fadi Issa (F)

Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.

Joanna Hester (J)

Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.

Jason Turner (J)

Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.

Saba Nayar (S)

Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK.

Jonas Mackerodt (J)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Fan Zhang (F)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
Center for Health AI, University of Colorado Anschutz, Anschutz, CO, USA.

Anna Jonsson (A)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Michael Brenner (M)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Soumya Raychaudhuri (S)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Ruth Kulicke (R)

Celsius Therapeutics, Cambridge, MA, USA.

Danielle Ramsdell (D)

Celsius Therapeutics, Cambridge, MA, USA.

Nicolas Stransky (N)

Celsius Therapeutics, Cambridge, MA, USA.

Ray Pagliarini (R)

Celsius Therapeutics, Cambridge, MA, USA.

Piotr Bielecki (P)

Celsius Therapeutics, Cambridge, MA, USA.

Noah Spies (N)

Celsius Therapeutics, Cambridge, MA, USA.

Brian Marsden (B)

Centre for Human Genetics, University of Oxford, Oxford, UK.

Stephen Taylor (S)

Centre for Human Genetics, University of Oxford, Oxford, UK.

Allon Wagner (A)

Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
The Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.

Paul Klenerman (P)

Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.

Alissa Walsh (A)

Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.

Mark Coles (M)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Luke Jostins-Dean (L)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Fiona M Powrie (FM)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Andrew Filer (A)

Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK.

Simon Travis (S)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. simon.travis@kennedy.ox.ac.uk.
Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK. simon.travis@kennedy.ox.ac.uk.
NIHR Oxford Biomedical Research Centre, Oxford, UK. simon.travis@kennedy.ox.ac.uk.

Holm H Uhlig (HH)

Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK. holm.uhlig@ndm.ox.ac.uk.
NIHR Oxford Biomedical Research Centre, Oxford, UK. holm.uhlig@ndm.ox.ac.uk.
Department of Paediatrics, University of Oxford, Oxford, UK. holm.uhlig@ndm.ox.ac.uk.

Calliope A Dendrou (CA)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. calliope.dendrou@kennedy.ox.ac.uk.
Centre for Human Genetics, University of Oxford, Oxford, UK. calliope.dendrou@kennedy.ox.ac.uk.
NIHR Oxford Biomedical Research Centre, Oxford, UK. calliope.dendrou@kennedy.ox.ac.uk.

Christopher D Buckley (CD)

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. christopher.buckley@kennedy.ox.ac.uk.
Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK. christopher.buckley@kennedy.ox.ac.uk.
Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK. christopher.buckley@kennedy.ox.ac.uk.
NIHR Oxford Biomedical Research Centre, Oxford, UK. christopher.buckley@kennedy.ox.ac.uk.

Classifications MeSH