Opposing impact of hypertension/diabetes following hormone therapy initiation and preexisting statins on castration resistant progression of nonmetastatic prostate cancer: a multicenter study.
Humans
Male
Hydroxymethylglutaryl-CoA Reductase Inhibitors
/ therapeutic use
Aged
Prostatic Neoplasms, Castration-Resistant
/ drug therapy
Disease Progression
Hypertension
/ drug therapy
Retrospective Studies
Androgen Antagonists
/ adverse effects
Middle Aged
Diabetes Mellitus
/ drug therapy
Aged, 80 and over
Androgen deprivation therapy
Castration-resistant prostate cancer
Diabetes
Hormone therapy
Hypertension
Statin
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 Oct 2024
04 Oct 2024
Historique:
received:
17
02
2024
accepted:
16
09
2024
medline:
5
10
2024
pubmed:
5
10
2024
entrez:
4
10
2024
Statut:
epublish
Résumé
Hormone therapy, especially androgen deprivation therapy (ADT), is effective against prostate cancer (PC), whereas long-term ADT is a risk for metabolic/cardiovascular disorders including diabetes (DM), hypertension (HT) and dyslipidemia (DL), and might result in progression to castration-resistant prostate cancer (CRPC). We thus conducted a multicenter retrospective cohort study to ask whether CRPC progression would be associated positively with HT, DM or DL and negatively with statins prescribed for treatment of DL. In this study, 1,112 nonmetastatic PC patients undergoing ADT were enrolled. Univariate statistical analyses clearly showed significant association of HT or DM developing after ADT onset, though not preexisting HT or DM, with early CRPC progression. On the other hand, preexisting DL or statin use, but not newly developed DL or started statin prescriptions following ADT, was negatively associated with CRPC progression. Multivariate analysis revealed significant independent association of the newly developed DM or HT, or preexisting statin use with CRPC progression [adjusted hazard ratios (95% confidence intervals): 3.85 (1.65-8.98), p = 0.002; 2.75 (1.36-5.59), p = 0.005; 0.25 (0.09-0.72), p = 0.010, respectively]. Together, ADT-related development of HT or DM and preexisting statin use are considered to have positive and negative impact on CRPC progression, respectively.
Identifiants
pubmed: 39367145
doi: 10.1038/s41598-024-73197-y
pii: 10.1038/s41598-024-73197-y
doi:
Substances chimiques
Hydroxymethylglutaryl-CoA Reductase Inhibitors
0
Androgen Antagonists
0
Types de publication
Journal Article
Multicenter Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
23119Informations de copyright
© 2024. The Author(s).
Références
Nguyen, P. T., Saito, E. & Katanoda, K. Long-term projections of cancer incidence and mortality in japan and decomposition analysis of changes in cancer burden, 2020–2054: an empirical validation approach. Cancers14 (2022).
Dickerman, B. A. et al. Midlife metabolic factors and prostate cancer risk in later life. Int. J. Cancer. 142, 1166–1173 (2018).
pubmed: 29114858
doi: 10.1002/ijc.31142
Shevach, J. et al. Concurrent diabetes mellitus may negatively influence clinical progression and response to Androgen Deprivation Therapy in patients with advanced prostate cancer. Front. Oncol.5, 129 (2015).
pubmed: 26125012
pmcid: 4467174
doi: 10.3389/fonc.2015.00129
Ma, C. et al. Poorly controlled diabetes mellitus increases the risk of deaths and castration-resistance in locally advanced prostate cancer patients. Cancer Invest.41, 345–353 (2023).
pubmed: 36715444
doi: 10.1080/07357907.2023.2171050
Suarez Arbelaez, M. C. et al. Association between body mass index, metabolic syndrome and common urologic conditions: a cross-sectional study using a large multi-institutional database from the United States. Ann. Med.55, 2197293 (2023).
pubmed: 37036830
pmcid: 10088970
doi: 10.1080/07853890.2023.2197293
Shiota, M. et al. Prognostic significance of antihypertensive agents in men with castration-resistant prostate cancer. Urol. Oncol.37, 813 e821–813e826 (2019).
doi: 10.1016/j.urolonc.2019.04.020
Monroy-Iglesias, M. J. et al. Metabolic syndrome biomarkers and prostate cancer risk in the UK Biobank. Int. J. Cancer. 148, 825–834 (2021).
pubmed: 33405276
doi: 10.1002/ijc.33255
Dickerman, B. & Mucci, L. Metabolic factors and prostate cancer risk. Clin. Chem.65, 42–44 (2019).
pubmed: 30459168
doi: 10.1373/clinchem.2018.287243
Schaeffer, E. et al. NCCN guidelines insights: prostate cancer, Version 1.2021. J. Natl. Compr. Canc Netw.19, 134–143 (2021).
pubmed: 33545689
doi: 10.6004/jnccn.2021.0008
Denmeade, S. R., Sena, L. A., Wang, H., Antonarakis, E. S. & Markowski, M. C. Bipolar androgen therapy followed by androgen receptor inhibition as sequential therapy for prostate cancer. Oncologist. 28, 465–473 (2023).
pubmed: 37027449
pmcid: 10243791
doi: 10.1093/oncolo/oyad055
Kirby, M., Hirst, C. & Crawford, E. D. Characterising the castration-resistant prostate cancer population: a systematic review. Int. J. Clin. Pract.65, 1180–1192 (2011).
pubmed: 21995694
doi: 10.1111/j.1742-1241.2011.02799.x
Hayashi, T., Miyamoto, T., Nagai, N. & Kawabata, A. Development of diabetes mellitus following hormone therapy in prostate cancer patients is associated with early progression to castration resistance. Sci. Rep.11, 17157 (2021).
pubmed: 34433857
pmcid: 8387479
doi: 10.1038/s41598-021-96584-1
Tamada, S. et al. Time to progression to castration-resistant prostate cancer after commencing combined androgen blockade for advanced hormone-sensitive prostate cancer. Oncotarget. 9, 36966–36974 (2018).
pubmed: 30651928
pmcid: 6319345
doi: 10.18632/oncotarget.26426
Recouvreux, M. V. et al. Androgen receptor regulation of local growth hormone in prostate cancer cells. Endocrinology. 158, 2255–2268 (2017).
pubmed: 28444169
pmcid: 5505214
doi: 10.1210/en.2016-1939
Mukherjee, R. et al. Upregulation of MAPK pathway is associated with survival in castrate-resistant prostate cancer. Br. J. Cancer. 104, 1920–1928 (2011).
pubmed: 21559022
pmcid: 3111196
doi: 10.1038/bjc.2011.163
Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Primers. 7, 9 (2021).
pubmed: 33542230
doi: 10.1038/s41572-020-00243-0
Fui, M. N. T. & Grossmann, M. Hypogonadism from androgen deprivation therapy in identical twins. Lancet. 388, 2653 (2016).
pubmed: 27291998
doi: 10.1016/S0140-6736(16)00583-3
Corona, G. et al. Cardiovascular risks of androgen deprivation therapy for prostate Cancer. World J. Mens Health. 39, 429–443 (2021).
pubmed: 32814370
doi: 10.5534/wjmh.200109
Mitsuzuka, K. & Arai, Y. Metabolic changes in patients with prostate cancer during androgen deprivation therapy. Int. J. Urol.25, 45–53 (2018).
pubmed: 29052905
doi: 10.1111/iju.13473
Braga-Basaria, M. et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J. Clin. Oncol.24, 3979–3983 (2006).
pubmed: 16921050
doi: 10.1200/JCO.2006.05.9741
Bosco, C., Crawley, D., Adolfsson, J., Rudman, S. & Van Hemelrijck, M. Quantifying the evidence for the risk of metabolic syndrome and its components following androgen deprivation therapy for prostate cancer: a meta-analysis. PLoS ONE. 10, e0117344 (2015).
pubmed: 25794005
pmcid: 4368630
doi: 10.1371/journal.pone.0117344
Wu, Y. H. et al. Risk of developing hypertension after hormone therapy for prostate cancer: a nationwide propensity score-matched longitudinal cohort study. Int. J. Clin. Pharm.42, 1433–1439 (2020).
pubmed: 32951178
doi: 10.1007/s11096-020-01143-9
Swaby, J. et al. Association of androgen deprivation therapy with metabolic disease in prostate cancer patients: an updated meta-analysis. Clin. Genitourin. Cancer. 21, e182–e189 (2023).
pubmed: 36621463
doi: 10.1016/j.clgc.2022.12.006
Smith, M. R. et al. Metabolic changes during gonadotropin-releasing hormone agonist therapy for prostate cancer: differences from the classic metabolic syndrome. Cancer. 112, 2188–2194 (2008).
pubmed: 18348297
doi: 10.1002/cncr.23440
Kakkat, S. et al. Cardiovascular Complications in Patients with Prostate Cancer: Potential Molecular Connections. Int. J. Mol. Sci. 242023).
Jayalath, V. H. et al. Statin use and survival among men receiving androgen-ablative therapies for advanced prostate cancer: a systematic review and Meta-analysis. JAMA Netw. Open.5, e2242676 (2022).
pubmed: 36449294
pmcid: 9713611
doi: 10.1001/jamanetworkopen.2022.42676
Heidenreich, A. et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol.65, 467–479 (2014).
pubmed: 24321502
doi: 10.1016/j.eururo.2013.11.002
Mohler, J. L. et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice guidelines in Oncology. J. Natl. Compr. Canc Netw.17, 479–505 (2019).
pubmed: 31085757
doi: 10.6004/jnccn.2019.0023
Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl.48, 452–458 (2013).
doi: 10.1038/bmt.2012.244
Lee, Y. H. A. et al. Statin use and mortality risk in Asian patients with prostate cancer receiving androgen deprivation therapy: a population-based cohort study. Cancer Med.132023).
Peltomaa, A. I. et al. Statin use and outcomes of oncological treatment for castration-resistant prostate cancer. Sci. Rep.13, 18866 (2023).
pubmed: 37914793
pmcid: 10620176
doi: 10.1038/s41598-023-45958-8
Murtola, T. J. et al. Blood glucose, glucose balance, and disease-specific survival after prostate cancer diagnosis in the Finnish randomized study of screening for prostate cancer. Prostate Cancer Prostatic Dis.22, 453–460 (2019).
pubmed: 30679762
doi: 10.1038/s41391-018-0123-0
Basaria, S., Muller, D. C., Carducci, M. A., Egan, J. & Dobs, A. S. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer. 106, 581–588 (2006).
pubmed: 16388523
doi: 10.1002/cncr.21642
Jhan, J. H. et al. New-onset diabetes after androgen-deprivation therapy for prostate cancer: a nationwide propensity score-matched four-year longitudinal cohort study. J. Diabetes Complications. 32, 688–692 (2018).
pubmed: 29909141
doi: 10.1016/j.jdiacomp.2018.03.007
Xu, W. et al. Androgen receptor-deficient islet beta-cells exhibit alteration in genetic markers of insulin secretion and inflammation. A transcriptome analysis in the male mouse. J. Diabetes Complications. 31, 787–795 (2017).
pubmed: 28343791
pmcid: 5472375
doi: 10.1016/j.jdiacomp.2017.03.002
Navarro, G. et al. Extranuclear actions of the androgen receptor enhance glucose-stimulated insulin secretion in the male. Cell. Metab.23, 837–851 (2016).
pubmed: 27133133
pmcid: 4864089
doi: 10.1016/j.cmet.2016.03.015
Kelly, D. M. & Jones, T. H. Testosterone: a metabolic hormone in health and disease. J. Endocrinol.217, R25–45 (2013).
pubmed: 23378050
doi: 10.1530/JOE-12-0455
Hupe, M. C. et al. Retrospective analysis of patients with prostate cancer initiating GnRH Agonists/Antagonists therapy using a German claims database: epidemiological and patient outcomes. Front. Oncol.8, 543 (2018).
pubmed: 30538951
pmcid: 6277700
doi: 10.3389/fonc.2018.00543
Torkler, S. et al. Inverse association between total testosterone concentrations, incident hypertension and blood pressure. Aging Male. 14, 176–182 (2011).
pubmed: 21087174
doi: 10.3109/13685538.2010.529194
Smith, M. R. et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J. Clin. Endocrinol. Metab.87, 599–603 (2002).
pubmed: 11836291
doi: 10.1210/jcem.87.2.8299
Gupta, D., Salmane, C., Slovin, S. & Steingart, R. M. Cardiovascular complications of androgen deprivation therapy for prostate cancer. Curr. Treat. Options Cardiovasc. Med.19, 61 (2017).
pubmed: 28653290
doi: 10.1007/s11936-017-0563-1
Xu, M. Y. et al. Association of Statin Use with the Risk of Incident Prostate Cancer: A Meta-Analysis and Systematic Review. J. Oncol. 7827821 (2022). (2022).
Woo, Y. C., Xu, A., Wang, Y. & Lam, K. S. Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin. Endocrinol.. 78, 489–496 (2013).
doi: 10.1111/cen.12095
Iglesias, P., Selgas, R., Romero, S. & Diez, J. J. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Eur. J. Endocrinol.167, 301–309 (2012).
pubmed: 22740503
doi: 10.1530/EJE-12-0357
Chavez, A. O. et al. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 32, 1542–1546 (2009).
pubmed: 19487637
pmcid: 2713625
doi: 10.2337/dc09-0684
Zhang, C. Y. & Yang, M. Roles of fibroblast growth factors in the treatment of diabetes. World J. Diabetes. 15, 392–402 (2024).
pubmed: 38591079
pmcid: 10999039
doi: 10.4239/wjd.v15.i3.392
Liu, J. J., Foo, J. P., Liu, S. & Lim, S. C. The role of fibroblast growth factor 21 in diabetes and its complications: a review from clinical perspective. Diabetes Res. Clin. Pract.108, 382–389 (2015).
pubmed: 25796513
doi: 10.1016/j.diabres.2015.02.032
Jin, L., Yang, R., Geng, L. & Xu, A. Fibroblast growth factor-based pharmacotherapies for the treatment of obesity-related metabolic complications. Annu. Rev. Pharmacol. Toxicol.63, 359–382 (2023).
pubmed: 36100222
doi: 10.1146/annurev-pharmtox-032322-093904
Singla, D. K., Singla, R. D., Abdelli, L. S. & Glass, C. Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart. PLoS ONE. 10, e0120739 (2015).
pubmed: 25768089
pmcid: 4359124
doi: 10.1371/journal.pone.0120739
Teishima, J. et al. Relationship between the localization of fibroblast growth factor 9 in prostate cancer cells and postoperative recurrence. Prostate Cancer Prostatic Dis.15, 8–14 (2012).
pubmed: 22006051
doi: 10.1038/pcan.2011.48
Teishima, J. et al. Fibroblast growth factor family in the progression of prostate cancer. J. Clin. Med.8, 183 (2019).
pubmed: 30720727
pmcid: 6406580
doi: 10.3390/jcm8020183
Tuomela, J. & Harkonen, P. Tumor models for prostate cancer exemplified by fibroblast growth factor 8-induced tumorigenesis and tumor progression. Reprod. Biol.14, 16–24 (2014).
pubmed: 24607251
doi: 10.1016/j.repbio.2014.01.002
Feng, S., Wang, J., Zhang, Y., Creighton, C. J. & Ittmann, M. FGF23 promotes prostate cancer progression. Oncotarget. 6, 17291–17301 (2015).
pubmed: 26019137
pmcid: 4627308
doi: 10.18632/oncotarget.4174
Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell.32, 474–489e476 (2017).
pubmed: 29017058
pmcid: 5750052
doi: 10.1016/j.ccell.2017.09.003
Saylor, P. J. et al. Changes in biomarkers of inflammation and angiogenesis during androgen deprivation therapy for prostate cancer. Oncologist. 17, 212–219 (2012).
pubmed: 22302227
pmcid: 3286170
doi: 10.1634/theoncologist.2011-0321
Li, Z. G. et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J. Clin. Invest.118, 2697–2710 (2008).
pubmed: 18618013
pmcid: 2447924
Labrecque, M. P. et al. Targeting the fibroblast growth factor pathway in molecular subtypes of castration-resistant prostate cancer. Prostate. 84, 100–110 (2024).
pubmed: 37796107
doi: 10.1002/pros.24630