Opposing impact of hypertension/diabetes following hormone therapy initiation and preexisting statins on castration resistant progression of nonmetastatic prostate cancer: a multicenter study.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 Oct 2024
Historique:
received: 17 02 2024
accepted: 16 09 2024
medline: 5 10 2024
pubmed: 5 10 2024
entrez: 4 10 2024
Statut: epublish

Résumé

Hormone therapy, especially androgen deprivation therapy (ADT), is effective against prostate cancer (PC), whereas long-term ADT is a risk for metabolic/cardiovascular disorders including diabetes (DM), hypertension (HT) and dyslipidemia (DL), and might result in progression to castration-resistant prostate cancer (CRPC). We thus conducted a multicenter retrospective cohort study to ask whether CRPC progression would be associated positively with HT, DM or DL and negatively with statins prescribed for treatment of DL. In this study, 1,112 nonmetastatic PC patients undergoing ADT were enrolled. Univariate statistical analyses clearly showed significant association of HT or DM developing after ADT onset, though not preexisting HT or DM, with early CRPC progression. On the other hand, preexisting DL or statin use, but not newly developed DL or started statin prescriptions following ADT, was negatively associated with CRPC progression. Multivariate analysis revealed significant independent association of the newly developed DM or HT, or preexisting statin use with CRPC progression [adjusted hazard ratios (95% confidence intervals): 3.85 (1.65-8.98), p = 0.002; 2.75 (1.36-5.59), p = 0.005; 0.25 (0.09-0.72), p = 0.010, respectively]. Together, ADT-related development of HT or DM and preexisting statin use are considered to have positive and negative impact on CRPC progression, respectively.

Identifiants

pubmed: 39367145
doi: 10.1038/s41598-024-73197-y
pii: 10.1038/s41598-024-73197-y
doi:

Substances chimiques

Hydroxymethylglutaryl-CoA Reductase Inhibitors 0
Androgen Antagonists 0

Types de publication

Journal Article Multicenter Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

23119

Informations de copyright

© 2024. The Author(s).

Références

Nguyen, P. T., Saito, E. & Katanoda, K. Long-term projections of cancer incidence and mortality in japan and decomposition analysis of changes in cancer burden, 2020–2054: an empirical validation approach. Cancers14 (2022).
Dickerman, B. A. et al. Midlife metabolic factors and prostate cancer risk in later life. Int. J. Cancer. 142, 1166–1173 (2018).
pubmed: 29114858 doi: 10.1002/ijc.31142
Shevach, J. et al. Concurrent diabetes mellitus may negatively influence clinical progression and response to Androgen Deprivation Therapy in patients with advanced prostate cancer. Front. Oncol.5, 129 (2015).
pubmed: 26125012 pmcid: 4467174 doi: 10.3389/fonc.2015.00129
Ma, C. et al. Poorly controlled diabetes mellitus increases the risk of deaths and castration-resistance in locally advanced prostate cancer patients. Cancer Invest.41, 345–353 (2023).
pubmed: 36715444 doi: 10.1080/07357907.2023.2171050
Suarez Arbelaez, M. C. et al. Association between body mass index, metabolic syndrome and common urologic conditions: a cross-sectional study using a large multi-institutional database from the United States. Ann. Med.55, 2197293 (2023).
pubmed: 37036830 pmcid: 10088970 doi: 10.1080/07853890.2023.2197293
Shiota, M. et al. Prognostic significance of antihypertensive agents in men with castration-resistant prostate cancer. Urol. Oncol.37, 813 e821–813e826 (2019).
doi: 10.1016/j.urolonc.2019.04.020
Monroy-Iglesias, M. J. et al. Metabolic syndrome biomarkers and prostate cancer risk in the UK Biobank. Int. J. Cancer. 148, 825–834 (2021).
pubmed: 33405276 doi: 10.1002/ijc.33255
Dickerman, B. & Mucci, L. Metabolic factors and prostate cancer risk. Clin. Chem.65, 42–44 (2019).
pubmed: 30459168 doi: 10.1373/clinchem.2018.287243
Schaeffer, E. et al. NCCN guidelines insights: prostate cancer, Version 1.2021. J. Natl. Compr. Canc Netw.19, 134–143 (2021).
pubmed: 33545689 doi: 10.6004/jnccn.2021.0008
Denmeade, S. R., Sena, L. A., Wang, H., Antonarakis, E. S. & Markowski, M. C. Bipolar androgen therapy followed by androgen receptor inhibition as sequential therapy for prostate cancer. Oncologist. 28, 465–473 (2023).
pubmed: 37027449 pmcid: 10243791 doi: 10.1093/oncolo/oyad055
Kirby, M., Hirst, C. & Crawford, E. D. Characterising the castration-resistant prostate cancer population: a systematic review. Int. J. Clin. Pract.65, 1180–1192 (2011).
pubmed: 21995694 doi: 10.1111/j.1742-1241.2011.02799.x
Hayashi, T., Miyamoto, T., Nagai, N. & Kawabata, A. Development of diabetes mellitus following hormone therapy in prostate cancer patients is associated with early progression to castration resistance. Sci. Rep.11, 17157 (2021).
pubmed: 34433857 pmcid: 8387479 doi: 10.1038/s41598-021-96584-1
Tamada, S. et al. Time to progression to castration-resistant prostate cancer after commencing combined androgen blockade for advanced hormone-sensitive prostate cancer. Oncotarget. 9, 36966–36974 (2018).
pubmed: 30651928 pmcid: 6319345 doi: 10.18632/oncotarget.26426
Recouvreux, M. V. et al. Androgen receptor regulation of local growth hormone in prostate cancer cells. Endocrinology. 158, 2255–2268 (2017).
pubmed: 28444169 pmcid: 5505214 doi: 10.1210/en.2016-1939
Mukherjee, R. et al. Upregulation of MAPK pathway is associated with survival in castrate-resistant prostate cancer. Br. J. Cancer. 104, 1920–1928 (2011).
pubmed: 21559022 pmcid: 3111196 doi: 10.1038/bjc.2011.163
Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Primers. 7, 9 (2021).
pubmed: 33542230 doi: 10.1038/s41572-020-00243-0
Fui, M. N. T. & Grossmann, M. Hypogonadism from androgen deprivation therapy in identical twins. Lancet. 388, 2653 (2016).
pubmed: 27291998 doi: 10.1016/S0140-6736(16)00583-3
Corona, G. et al. Cardiovascular risks of androgen deprivation therapy for prostate Cancer. World J. Mens Health. 39, 429–443 (2021).
pubmed: 32814370 doi: 10.5534/wjmh.200109
Mitsuzuka, K. & Arai, Y. Metabolic changes in patients with prostate cancer during androgen deprivation therapy. Int. J. Urol.25, 45–53 (2018).
pubmed: 29052905 doi: 10.1111/iju.13473
Braga-Basaria, M. et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J. Clin. Oncol.24, 3979–3983 (2006).
pubmed: 16921050 doi: 10.1200/JCO.2006.05.9741
Bosco, C., Crawley, D., Adolfsson, J., Rudman, S. & Van Hemelrijck, M. Quantifying the evidence for the risk of metabolic syndrome and its components following androgen deprivation therapy for prostate cancer: a meta-analysis. PLoS ONE. 10, e0117344 (2015).
pubmed: 25794005 pmcid: 4368630 doi: 10.1371/journal.pone.0117344
Wu, Y. H. et al. Risk of developing hypertension after hormone therapy for prostate cancer: a nationwide propensity score-matched longitudinal cohort study. Int. J. Clin. Pharm.42, 1433–1439 (2020).
pubmed: 32951178 doi: 10.1007/s11096-020-01143-9
Swaby, J. et al. Association of androgen deprivation therapy with metabolic disease in prostate cancer patients: an updated meta-analysis. Clin. Genitourin. Cancer. 21, e182–e189 (2023).
pubmed: 36621463 doi: 10.1016/j.clgc.2022.12.006
Smith, M. R. et al. Metabolic changes during gonadotropin-releasing hormone agonist therapy for prostate cancer: differences from the classic metabolic syndrome. Cancer. 112, 2188–2194 (2008).
pubmed: 18348297 doi: 10.1002/cncr.23440
Kakkat, S. et al. Cardiovascular Complications in Patients with Prostate Cancer: Potential Molecular Connections. Int. J. Mol. Sci. 242023).
Jayalath, V. H. et al. Statin use and survival among men receiving androgen-ablative therapies for advanced prostate cancer: a systematic review and Meta-analysis. JAMA Netw. Open.5, e2242676 (2022).
pubmed: 36449294 pmcid: 9713611 doi: 10.1001/jamanetworkopen.2022.42676
Heidenreich, A. et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol.65, 467–479 (2014).
pubmed: 24321502 doi: 10.1016/j.eururo.2013.11.002
Mohler, J. L. et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice guidelines in Oncology. J. Natl. Compr. Canc Netw.17, 479–505 (2019).
pubmed: 31085757 doi: 10.6004/jnccn.2019.0023
Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl.48, 452–458 (2013).
doi: 10.1038/bmt.2012.244
Lee, Y. H. A. et al. Statin use and mortality risk in Asian patients with prostate cancer receiving androgen deprivation therapy: a population-based cohort study. Cancer Med.132023).
Peltomaa, A. I. et al. Statin use and outcomes of oncological treatment for castration-resistant prostate cancer. Sci. Rep.13, 18866 (2023).
pubmed: 37914793 pmcid: 10620176 doi: 10.1038/s41598-023-45958-8
Murtola, T. J. et al. Blood glucose, glucose balance, and disease-specific survival after prostate cancer diagnosis in the Finnish randomized study of screening for prostate cancer. Prostate Cancer Prostatic Dis.22, 453–460 (2019).
pubmed: 30679762 doi: 10.1038/s41391-018-0123-0
Basaria, S., Muller, D. C., Carducci, M. A., Egan, J. & Dobs, A. S. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer. 106, 581–588 (2006).
pubmed: 16388523 doi: 10.1002/cncr.21642
Jhan, J. H. et al. New-onset diabetes after androgen-deprivation therapy for prostate cancer: a nationwide propensity score-matched four-year longitudinal cohort study. J. Diabetes Complications. 32, 688–692 (2018).
pubmed: 29909141 doi: 10.1016/j.jdiacomp.2018.03.007
Xu, W. et al. Androgen receptor-deficient islet beta-cells exhibit alteration in genetic markers of insulin secretion and inflammation. A transcriptome analysis in the male mouse. J. Diabetes Complications. 31, 787–795 (2017).
pubmed: 28343791 pmcid: 5472375 doi: 10.1016/j.jdiacomp.2017.03.002
Navarro, G. et al. Extranuclear actions of the androgen receptor enhance glucose-stimulated insulin secretion in the male. Cell. Metab.23, 837–851 (2016).
pubmed: 27133133 pmcid: 4864089 doi: 10.1016/j.cmet.2016.03.015
Kelly, D. M. & Jones, T. H. Testosterone: a metabolic hormone in health and disease. J. Endocrinol.217, R25–45 (2013).
pubmed: 23378050 doi: 10.1530/JOE-12-0455
Hupe, M. C. et al. Retrospective analysis of patients with prostate cancer initiating GnRH Agonists/Antagonists therapy using a German claims database: epidemiological and patient outcomes. Front. Oncol.8, 543 (2018).
pubmed: 30538951 pmcid: 6277700 doi: 10.3389/fonc.2018.00543
Torkler, S. et al. Inverse association between total testosterone concentrations, incident hypertension and blood pressure. Aging Male. 14, 176–182 (2011).
pubmed: 21087174 doi: 10.3109/13685538.2010.529194
Smith, M. R. et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J. Clin. Endocrinol. Metab.87, 599–603 (2002).
pubmed: 11836291 doi: 10.1210/jcem.87.2.8299
Gupta, D., Salmane, C., Slovin, S. & Steingart, R. M. Cardiovascular complications of androgen deprivation therapy for prostate cancer. Curr. Treat. Options Cardiovasc. Med.19, 61 (2017).
pubmed: 28653290 doi: 10.1007/s11936-017-0563-1
Xu, M. Y. et al. Association of Statin Use with the Risk of Incident Prostate Cancer: A Meta-Analysis and Systematic Review. J. Oncol. 7827821 (2022). (2022).
Woo, Y. C., Xu, A., Wang, Y. & Lam, K. S. Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin. Endocrinol.. 78, 489–496 (2013).
doi: 10.1111/cen.12095
Iglesias, P., Selgas, R., Romero, S. & Diez, J. J. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Eur. J. Endocrinol.167, 301–309 (2012).
pubmed: 22740503 doi: 10.1530/EJE-12-0357
Chavez, A. O. et al. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 32, 1542–1546 (2009).
pubmed: 19487637 pmcid: 2713625 doi: 10.2337/dc09-0684
Zhang, C. Y. & Yang, M. Roles of fibroblast growth factors in the treatment of diabetes. World J. Diabetes. 15, 392–402 (2024).
pubmed: 38591079 pmcid: 10999039 doi: 10.4239/wjd.v15.i3.392
Liu, J. J., Foo, J. P., Liu, S. & Lim, S. C. The role of fibroblast growth factor 21 in diabetes and its complications: a review from clinical perspective. Diabetes Res. Clin. Pract.108, 382–389 (2015).
pubmed: 25796513 doi: 10.1016/j.diabres.2015.02.032
Jin, L., Yang, R., Geng, L. & Xu, A. Fibroblast growth factor-based pharmacotherapies for the treatment of obesity-related metabolic complications. Annu. Rev. Pharmacol. Toxicol.63, 359–382 (2023).
pubmed: 36100222 doi: 10.1146/annurev-pharmtox-032322-093904
Singla, D. K., Singla, R. D., Abdelli, L. S. & Glass, C. Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart. PLoS ONE. 10, e0120739 (2015).
pubmed: 25768089 pmcid: 4359124 doi: 10.1371/journal.pone.0120739
Teishima, J. et al. Relationship between the localization of fibroblast growth factor 9 in prostate cancer cells and postoperative recurrence. Prostate Cancer Prostatic Dis.15, 8–14 (2012).
pubmed: 22006051 doi: 10.1038/pcan.2011.48
Teishima, J. et al. Fibroblast growth factor family in the progression of prostate cancer. J. Clin. Med.8, 183 (2019).
pubmed: 30720727 pmcid: 6406580 doi: 10.3390/jcm8020183
Tuomela, J. & Harkonen, P. Tumor models for prostate cancer exemplified by fibroblast growth factor 8-induced tumorigenesis and tumor progression. Reprod. Biol.14, 16–24 (2014).
pubmed: 24607251 doi: 10.1016/j.repbio.2014.01.002
Feng, S., Wang, J., Zhang, Y., Creighton, C. J. & Ittmann, M. FGF23 promotes prostate cancer progression. Oncotarget. 6, 17291–17301 (2015).
pubmed: 26019137 pmcid: 4627308 doi: 10.18632/oncotarget.4174
Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell.32, 474–489e476 (2017).
pubmed: 29017058 pmcid: 5750052 doi: 10.1016/j.ccell.2017.09.003
Saylor, P. J. et al. Changes in biomarkers of inflammation and angiogenesis during androgen deprivation therapy for prostate cancer. Oncologist. 17, 212–219 (2012).
pubmed: 22302227 pmcid: 3286170 doi: 10.1634/theoncologist.2011-0321
Li, Z. G. et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J. Clin. Invest.118, 2697–2710 (2008).
pubmed: 18618013 pmcid: 2447924
Labrecque, M. P. et al. Targeting the fibroblast growth factor pathway in molecular subtypes of castration-resistant prostate cancer. Prostate. 84, 100–110 (2024).
pubmed: 37796107 doi: 10.1002/pros.24630

Auteurs

Tomonori Hayashi (T)

Department of Pharmacy, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma, Nara, 630-0293, Japan.

Tomoyoshi Miyamoto (T)

School of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Chuo-ku, Hyogo, 663- 8530, Japan.
Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3- 4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.

Shiori Iwane (S)

Department of Hospital Pharmacy, Kansai Medical University, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.
Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3- 4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.

Masanori Fujitani (M)

Department of Pharmacy, Seichokai Fuchu Hospital, 1-10-1, Hiko-Town, Izumi, Osaka, 594-0076, Japan.

Kazuki Uchitani (K)

Department of Hospital Pharmacy, Kansai Medical University, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.

Yuichi Koizumi (Y)

Department of Pharmacy, Seichokai Fuchu Hospital, 1-10-1, Hiko-Town, Izumi, Osaka, 594-0076, Japan.

Atsushi Hirata (A)

Department of Pharmacy, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma, Nara, 630-0293, Japan.

Hidefumi Kinoshita (H)

Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.

Atsufumi Kawabata (A)

Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3- 4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan. kawabata@phar.kindai.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH