Diphenyl urea-benzylidene acetohydrazide hybrids as fibroblast growth factor receptor 1 inhibitors and anticancer agents.


Journal

Drug development research
ISSN: 1098-2299
Titre abrégé: Drug Dev Res
Pays: United States
ID NLM: 8204468

Informations de publication

Date de publication:
Sep 2024
Historique:
revised: 29 07 2024
received: 17 04 2024
accepted: 04 08 2024
medline: 24 8 2024
pubmed: 24 8 2024
entrez: 24 8 2024
Statut: ppublish

Résumé

Molecular hybridization between diphenyl urea and benzylidene acetohydrazide was adopted for the design of a new series of FGFR-1 targeting cancer. The designed series was synthesized and submitted to NCI-USA to be screened for their growth inhibitory activity on NCI cancer cell lines. Some of the synthesized hybrids displayed promising growth inhibitory activity on NCI cancer cell lines with a mean GI% between 70.39% and a lethal effect. Compounds 9a, 9i, 9j, and 9n-p were further selected for a five-dose assay and all the tested candidates showed promising antiproliferative activity with GI

Identifiants

pubmed: 39180323
doi: 10.1002/ddr.22249
doi:

Substances chimiques

Antineoplastic Agents 0
Receptor, Fibroblast Growth Factor, Type 1 EC 2.7.10.1
Hydrazines 0
FGFR1 protein, human EC 2.7.10.1
Benzylidene Compounds 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e22249

Informations de copyright

© 2024 Wiley Periodicals LLC.

Références

Abd El‐Karim, S. S., Syam, Y. M., El Kerdawy, A. M., & Abdel‐Mohsen, H. T. (2024). Rational design and synthesis of novel quinazolinone N‐acetohydrazides as type II multi‐kinase inhibitors and potential anticancer agents. Bioorganic Chemistry, 142, 106920. https://doi.org/10.1016/j.bioorg.2023.106920
Abdel‐Maksoud, M. S., Mohamed, A. A. B., Hassan, R. M., Abdelgawad, M. A., Chilingaryan, G., Selim, S., Abdel‐Bakky, M. S., & Al‐Sanea, M. M. (2021). Design, synthesis and anticancer profile of new 4‐(1H‐benzo[d]imidazol‐1‐yl)pyrimidin‐2‐amine‐Linked sulfonamide derivatives with V600EBRAF inhibitory effect. International Journal of Molecular Sciences, 22(19), 10491. https://doi.org/10.3390/ijms221910491
Abdel‐Mohsen, H. T., Abd El‐Meguid, E. A., El Kerdawy, A. M., Mahmoud, A. E. E., & Ali, M. M. (2020). Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Archiv der Pharmazie, 353(4), e1900340. https://doi.org/10.1002/ardp.201900340
Abdel‐Mohsen, H. T., Abdullaziz, M. A., El Kerdawy, A. M., Ragab, F. A. F., Flanagan, K. J., Mahmoud, A. E. E., Ali, M. M., El Diwani, H. I., & Senge, M. O. (2020). Targeting receptor tyrosine kinase VEGFR‐2 in hepatocellular cancer: Rational design, synthesis and biological evaluation of 1,2‐dDisubstituted benzimidazoles. Molecules, 25(4), 770. https://doi.org/10.3390/molecules25040770
Abdel‐Mohsen, H. T., Anwar, M. M., Ahmed, N. S., Abd El‐Karim, S. S., & Abdelwahed, S. H. (2024). Recent advances in structural optimization of quinazoline‐based protein kinase inhibitors for cancer therapy (2021‐present). Molecules, 29(4), 875. https://doi.org/10.3390/molecules29040875
Abdel‐Mohsen, H. T., Ibrahim, M. A., Nageeb, A. M., & El Kerdawy, A. M. (2024). Receptor‐based pharmacophore modeling, molecular docking, synthesis and biological evaluation of novel VEGFR‐2, FGFR‐1, and BRAF multi‐kinase inhibitors. BMC Chemistry, 18(1), 42. https://doi.org/10.1186/s13065-024-01135-0
Abdel‐Mohsen, H. T., Omar, M. A., Petreni, A., & Supuran, C. T. (2022). Novel 2‐substituted thioquinazoline‐benzenesulfonamide derivatives as carbonic anhydrase inhibitors with potential anticancer activity. Archiv der Pharmazie, 355(12), e2200180. https://doi.org/10.1002/ardp.202200180
Abdel‐Mohsen, H. T., Petreni, A., & Supuran, C. T. (2022). Investigation of the carbonic anhydrase inhibitory activity of benzenesulfonamides incorporating substituted fused‐pyrimidine tails. Archiv der Pharmazie, 355(11), e2200274. https://doi.org/10.1002/ardp.202200274
Abdel‐Mohsen, H. T., Syam, Y. M., Abd El‐Ghany, M. S., & Abd El‐Karim, S. S. (2024). Benzimidazole‐oxindole hybrids: A novel class of selective dual CDK2 and GSK‐3β inhibitors of potent anticancer activity. Archiv der Pharmazie, e2300721. https://doi.org/10.1002/ardp.202300721
Ali, I. H., Abdel‐Mohsen, H. T., Mounier, M. M., Abo‐elfadl, M. T., El Kerdawy, A. M., & Ghannam, I. A. Y. (2022). Design, synthesis and anticancer activity of novel 2‐arylbenzimidazole/2‐thiopyrimidines and 2‐thioquinazolin‐4(3H)‐ones conjugates as targeted RAF and VEGFR‐2 kinases inhibitors. Bioorganic Chemistry, 126, 105883. https://doi.org/10.1016/j.bioorg.2022.105883
Allam, R. M., El Kerdawy, A. M., Gouda, A. E., Ahmed, K. A., & Abdel‐Mohsen, H. T. (2024). Benzimidazole‐oxindole hybrids as multi‐kinase inhibitors targeting melanoma. Bioorganic Chemistry, 146, 107243. https://doi.org/10.1016/j.bioorg.2024.107243
Amin, M. L. (2013). P‐glycoprotein inhibition for optimal drug delivery. Drug Target Insights, 7, S12519. https://doi.org/10.4137/DTI.S12519
Anand, U., Dey, A., Chandel, A., Sanyal, R., Mishra, A., Pandey, D. K., De Falco, V., Upadhyay, A., Kandimalla, R., Chaudhary, A., Dhanjal, J. K., Dewanjee, S., Vallamkondu, J., & Pérez de la Lastra, J. M. (2023). Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases, 10(4), 1367–1401. https://doi.org/10.1016/j.gendis.2022.02.007
Bae, J. M., Wen, X., Kim, T. S., Kwak, Y., Cho, N. Y., Lee, H. S., & Kang, G. H. (2020). Fibroblast growth factor receptor 1 (FGFR1) amplification detected by droplet digital polymerase chain reaction (ddPCR) is a prognostic factor in colorectal cancers. Cancer Research and Treatment, 52(1), 74–84. https://doi.org/10.4143/crt.2019.062
Cabanillas, M. E., & Habra, M. A. (2016). Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treatment Reviews, 42, 47–55. https://doi.org/10.1016/j.ctrv.2015.11.003
Chioni, A. M., & Grose, R. P. (2021). Biological significance and targeting of the FGFR axis in cancer. Cancers, 13(22), 5681. https://doi.org/10.3390/cancers13225681
Dai, S., Zhou, Z., Chen, Z., Xu, G., & Chen, Y. (2019). Fibroblast growth factor receptors (FGFRs): Structures and small molecule inhibitors. Cells, 8(6), 614. https://doi.org/10.3390/cells8060614
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug‐likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
Daina, A., & Zoete, V. (2016). A BOILED‐eEgg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
Delaney, J. S. (2004). ESOL: Estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer Sciences, 44(3), 1000–1005. https://doi.org/10.1021/ci034243x
Diori Karidio, I., & Sanlier, S. H. (2021). Reviewing cancer's biology: An eclectic approach. Journal of the Egyptian National Cancer Institute, 33(1), 32. https://doi.org/10.1186/s43046-021-00088-y
El Diwani, H. I., Abdel‐Mohsen, H. T., Salama, I., Ragab, F. A.‐F., Ramla, M. M., Galal, S. A., Abdalla, M. M., Abdel‐Wahab, A., & El Demellawy, M. A. (2014). Synthesis, molecular modeling, and biological evaluation of novel benzimidazole derivatives as inhibitors of hepatitis C virus RNA replication. Chemical and Pharmaceutical Bulletin, 62(9), 856–866. https://doi.org/10.1248/cpb.c13-01009
Elmeligie, S., Aboul‐Magd, A. M., Lasheen, D. S., Ibrahim, T. M., Abdelghany, T. M., Khojah, S. M., & Abouzid, K. A. M. (2019). Design and synthesis of phthalazine‐based compounds as potent anticancer agents with potential antiangiogenic activity via VEGFR‐2 inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1347–1367. https://doi.org/10.1080/14756366.2019.1642883
Ghannam, I. A. Y., El Kerdawy, A. M., Mounier, M. M., Abo‐elfadl, M. T., & Ali, I. H. (2023). Novel 2‐oxo‐2‐phenylethoxy and benzyloxy diaryl urea hybrids as VEGFR‐2 inhibitors: Design, synthesis, and anticancer evaluation. Archiv der Pharmazie, 356(2), e2200341. https://doi.org/10.1002/ardp.202200341
Hao, Z., & Wang, P. (2020). Lenvatinib in management of solid tumors. The Oncologist, 25(2), e302–e310. https://doi.org/10.1634/theoncologist.2019-0407
Kudo, M., Finn, R. S., Qin, S., Han, K. H., Ikeda, K., Piscaglia, F., Baron, A., Park, J. W., Han, G., Jassem, J., Blanc, J. F., Vogel, A., Komov, D., Evans, T. R. J., Lopez, C., Dutcus, C., Guo, M., Saito, K., Kraljevic, S., … Cheng, A. L. (2018). Lenvatinib versus sorafenib in first‐line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non‐inferiority trial. The Lancet, 391(10126), 1163–1173. https://doi.org/10.1016/S0140-6736(18)30207-1
Kumar, P., Kadyan, K., Duhan, M., Sindhu, J., Singh, V., & Saharan, B. S. (2017). Design, synthesis, conformational and molecular docking study of some novel acyl hydrazone based molecular hybrids as antimalarial and antimicrobial agents. Chemistry Central Journal, 11(1), 115. https://doi.org/10.1186/s13065-017-0344-7
Lenvatinib approved for certain thyroid cancers. (2015). Cancer Discovery, 5(4), 338. https://doi.org/10.1158/2159-8290.CD-NB2015-029
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
Listro, R., Rossino, G., Piaggi, F., Sonekan, F. F., Rossi, D., Linciano, P., & Collina, S. (2022). Urea‐based anticancer agents. Exploring 100‐years of research with an eye to the future. Frontiers in Chemistry, 10, 995351. https://doi.org/10.3389/fchem.2022.995351
Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J. F., de Oliveira, A. C., Santoro, A., Raoul, J. L., Forner, A., Schwartz, M., Porta, C., Zeuzem, S., Bolondi, L., Greten, T. F., Galle, P. R., Seitz, J. F., Borbath, I., Häussinger, D., … Bruix, J. (2008). Sorafenib in advanced hepatocellular carcinoma. New England Journal of Medicine, 359(4), 378–390. https://doi.org/10.1056/NEJMoa0708857
Munir, R., Javid, N., Zia‐Ur‐Rehman, M., Zaheer, M., Huma, R., Roohi, A., & Athar, M. M. (2021). Synthesis of novel N‐Acylhydrazones and their C‐N/N‐N bond conformational characterization by NMR spectroscopy. Molecules, 26(16), 4908. https://doi.org/10.3390/molecules26164908
Palla, G., Predieri, G., Domiano, P., Vignali, C., & Turner, W. (1986). Conformational behaviour and/isomerization of ‐acyl and ‐aroylhydrazones. Tetrahedron, 42(13), 3649–3654. https://doi.org/10.1016/S0040-4020(01)87332-4
Patorski, P., Wyrzykiewicz, E., & Bartkowiak, G. (2013). Synthesis and conformational assignment of N‐(E)‐stilbenyloxymethylenecarbonyl‐substituted hydrazones of acetone and o‐, m‐ and p‐chloro‐(nitro‐) benzaldehydes by means of and NMR spectroscopy. Journal of Spectroscopy, 2013, 1–12. https://doi.org/10.1155/2013/197475
Shan, K. S., Dalal, S., Thaw Dar, N. N., McLish, O., Salzberg, M., & Pico, B. A. (2024). Molecular targeting of the fibroblast growth factor receptor pathway across various cancers. International Journal of Molecular Sciences, 25(2), 849. https://doi.org/10.3390/ijms25020849
Shen, C. T., Qiu, Z. L., & Luo, Q. Y. (2014). Sorafenib in the treatment of radioiodine‐refractory differentiated thyroid cancer: Aa meta‐analysis. Endocrine‐Related Cancer, 21(2), 253–261. https://doi.org/10.1530/ERC-13-0438
Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 74(1), 12–49. https://doi.org/10.3322/caac.21820
Sifaki‐Pistolla, D., Poimenaki, V., Fotopoulou, I., Saloustros, E., Mavroudis, D., Vamvakas, L., & Lionis, C. (2022). Significant rise of colorectal cancer incidence in younger adults and strong determinants: 30 years longitudinal differences between under and over 50s. Cancers, 14(19), 4799. https://doi.org/10.3390/cancers14194799
Syam, Y. M., Abd El‐Karim, S. S., & Abdel‐Mohsen, H. T. (2024). Quinazoline‐oxindole hybrids as angiokinase inhibitors and anticancer agents: Design, synthesis, biological evaluation, and molecular docking studies. Archiv der Pharmazie, e2300682. https://doi.org/10.1002/ardp.202300682
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
Tucker, J. A., Klein, T., Breed, J., Breeze, A. L., Overman, R., Phillips, C., & Norman, R. A. (2014). Structural insights into FGFR kinase isoform selectivity: Diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure, 22(12), 1764–1774. https://doi.org/10.1016/j.str.2014.09.019
Xie, Y., Su, N., Yang, J., Tan, Q., Huang, S., Jin, M., Ni, Z., Zhang, B., Zhang, D., Luo, F., Chen, H., Sun, X., Feng, J. Q., Qi, H., & Chen, L. (2020). FGF/FGFR signaling in health and disease. Signal Transduction and Targeted Therapy, 5(1), 181. https://doi.org/10.1038/s41392-020-00222-7
Zheng, J., Zhang, W., Li, L., He, Y., Wei, Y., Dang, Y., Nie, S., & Guo, Z. (2022). Signaling pathway and small‐molecule drug discovery of FGFR: A comprehensive review. Frontiers in Chemistry, 10, 860985. https://doi.org/10.3389/fchem.2022.860985
Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., Yang, W., Tian, C., Miao, Z., Wang, T., & Yang, S. (2021). Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 6(1), 201. https://doi.org/10.1038/s41392-021-00572-w

Auteurs

Heba T Abdel-Mohsen (HT)

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt.

Amira M Nageeb (AM)

High Throughput Molecular and Genetic Technology Lab, Center of Excellence for Advanced Sciences, Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.

Iman A Y Ghannam (IAY)

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH