Neuroprotective Effects of VGLUT1 Inhibition in HT22 Cells Overexpressing VGLUT1 Under Oxygen Glucose Deprivation Conditions.


Journal

Neuromolecular medicine
ISSN: 1559-1174
Titre abrégé: Neuromolecular Med
Pays: United States
ID NLM: 101135365

Informations de publication

Date de publication:
23 Aug 2024
Historique:
received: 28 06 2024
accepted: 20 08 2024
medline: 24 8 2024
pubmed: 24 8 2024
entrez: 23 8 2024
Statut: epublish

Résumé

Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs) regulate Glu loading into synaptic vesicles, crucial for maintaining optimal extracellular Glu levels. This study investigates the neuroprotective effects of VGLUT1 inhibition in HT22 cells overexpressing VGLUT1 under oxygen glucose deprivation (OGD) conditions. HT22 cells, a hippocampal neuron model, were transduced with lentiviral vectors to overexpress VGLUT1. Cells were subjected to OGD, with pre-incubation of Chicago Sky Blue 6B (CSB6B), an unspecific VGLUT inhibitor. Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential, and hypoxia-related protein markers (PARP1, AIF, NLRP3) were assessed. Results indicated that VGLUT1 overexpression increased vulnerability to OGD, evidenced by higher LDH release and reduced cell viability. CSB6B treatment improved cell viability and reduced LDH release in OGD conditions, particularly at 0.1 μM and 1.0 μM concentrations. Moreover, CSB6B preserved mitochondrial membrane potential and decreased levels of PARP1, AIF, and NLRP3 proteins, suggesting neuroprotective effects through mitigating excitotoxicity. This study demonstrates that VGLUT1 inhibition could be a promising therapeutic strategy for ischemic brain injury, warranting further investigation into selective VGLUT1 inhibitors.

Identifiants

pubmed: 39179680
doi: 10.1007/s12017-024-08803-3
pii: 10.1007/s12017-024-08803-3
doi:

Substances chimiques

Glucose IY9XDZ35W2
Vesicular Glutamate Transport Protein 1 0
Neuroprotective Agents 0
L-Lactate Dehydrogenase EC 1.1.1.27
Oxygen S88TT14065
Slc17a7 protein, mouse 0
Slc17a6 protein, mouse 0
Glutamic Acid 3KX376GY7L
Vesicular Glutamate Transport Protein 2 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

35

Subventions

Organisme : Narodowe Centrum Nauki
ID : 2016/21/B/NZ4/03294

Informations de copyright

© 2024. The Author(s).

Références

Choi, D. W. (2020). Excitotoxicity: Still hammering the ischemic brain in 2020. Frontiers in Neuroscience, 14, 579953. https://doi.org/10.3389/FNINS.2020.579953/BIBTEX
doi: 10.3389/FNINS.2020.579953/BIBTEX pubmed: 33192266 pmcid: 7649323
Dong, X. X., Wang, Y., & Qin, Z. H. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica, 30(4), 379. https://doi.org/10.1038/APS.2009.24
doi: 10.1038/APS.2009.24 pubmed: 19343058 pmcid: 4002277
Feng, Y. S., Tan, Z. X., Wang, M. M., Xing, Y., Dong, F., & Zhang, F. (2020). Inhibition of NLRP3 inflammasome: A prospective target for the treatment of ischemic stroke. Frontiers in Cellular Neuroscience, 14, 526042. https://doi.org/10.3389/FNCEL.2020.00155/BIBTEX
doi: 10.3389/FNCEL.2020.00155/BIBTEX
Fremeau, R. T., Troyer, M. D., Pahner, I., Nygaard, G. O., Tran, C. H., Reimer, R. J., Bellocchio, E. E., Fortin, D., Storm-Mathisen, J., & Edwards, R. H. (2001). The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron, 31(2), 247–260. https://doi.org/10.1016/S0896-6273(01)00344-0
doi: 10.1016/S0896-6273(01)00344-0 pubmed: 11502256
Kaneko, T., & Fujiyama, F. (2002). Complementary distribution of vesicular glutamate transporters in the central nervous system. Neuroscience Research, 42(4), 243–250. https://doi.org/10.1016/S0168-0102(02)00009-3
doi: 10.1016/S0168-0102(02)00009-3 pubmed: 11985876
Krzyzanowska, W., Pomierny, B., Filip, M., & Pera, J. (2014). Glutamate transporters in brain ischemia: To modulate or not? Acta Pharmacologica Sinica, 35(4), 444–462. https://doi.org/10.1038/aps.2014.1
doi: 10.1038/aps.2014.1 pubmed: 24681894 pmcid: 4813728
Liu, L., Li, J., Ke, Y., Zeng, X., Gao, J., Ba, X., & Wang, R. (2022). The key players of parthanatos: Opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cellular and Molecular Life Sciences, 79(1), 1–15. https://doi.org/10.1007/S00018-021-04109-W
doi: 10.1007/S00018-021-04109-W
Pellegrini-Giampietro, D. E., Meli, E., & Moroni, F. (2004). Excitotoxicity in cerebral ischemia. Excitotoxicity in Neurological Diseases. https://doi.org/10.1007/978-1-4419-8959-8_9
doi: 10.1007/978-1-4419-8959-8_9
Pomierny, B., Krzyżanowska, W., Skórkowska, A., Jurczyk, J., Budziszewska, B., & Pera, J. (2024). Chicago Sky Blue 6B exerts neuroprotective and anti-inflammatory effects on focal cerebral ischemia. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/J.BIOPHA.2023.116102
doi: 10.1016/J.BIOPHA.2023.116102
Pomierny, B., Krzyżanowska, W., Skórkowska, A., Jurczyk, J., Bystrowska, B., Budziszewska, B., & Pera, J. (2023). Inhibition of vesicular glutamate transporters (VGLUTs) with Chicago Sky Blue 6B before focal cerebral ischemia offers neuroprotection. Molecular Neurobiology, 60(6), 3130–3146. https://doi.org/10.1007/s12035-023-03259-1
doi: 10.1007/s12035-023-03259-1 pubmed: 36802054 pmcid: 10122628
Shen, Z., Xiang, M., Chen, C., Ding, F., Wang, Y., Shang, C., Xin, L., Zhang, Y., & Cui, X. (2022). Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomedicine & Pharmacotherapy, 151, 113125. https://doi.org/10.1016/J.BIOPHA.2022.113125
doi: 10.1016/J.BIOPHA.2022.113125
Takamori, S., Rhec, J. S., Rosenmund, C., & Jahn, R. (2000). Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature, 407(6801), 189–194. https://doi.org/10.1038/35025070
doi: 10.1038/35025070 pubmed: 11001057
Thompson, C., Davis, E., Carrigan, C., Cox, H., Bridges, R., & Gerdes, J. (2005). Inhibitors of the glutamate vesicular transporter (VGLUT). Current Medicinal Chemistry, 12(18), 2041–2056. https://doi.org/10.2174/0929867054637635
doi: 10.2174/0929867054637635 pubmed: 16101493
Yan, S., Xuan, Z., Yang, M., Wang, C., Tao, T., Wang, Q., & Cui, W. (2020). CSB6B prevents β-amyloid-associated neuroinflammation and cognitive impairments via inhibiting NF-κB and NLRP3 in microglia cells. International Immunopharmacology. https://doi.org/10.1016/j.intimp.2020.106263
doi: 10.1016/j.intimp.2020.106263 pubmed: 33370683 pmcid: 7855363
Ye, H. B., Shi, H. B., & Yin, S. K. (2013). Mechanisms underlying taurine protection against glutamate-induced neurotoxicity. Canadian Journal of Neurological Sciences, 40(5), 628–634. https://doi.org/10.1017/S0317167100014840
doi: 10.1017/S0317167100014840

Auteurs

B Pomierny (B)

Department of Toxicological Biochemistry, Jagiellonian University Medical College, Kraków, Poland. bartosz.pomierny@uj.edu.pl.
BioImaging Laboratory, Centre for the Development of Therapies for Civilizational and Age-Related Diseases (CDT-CARD), Kraków, Poland. bartosz.pomierny@uj.edu.pl.

W Krzyżanowska (W)

Department of Toxicological Biochemistry, Jagiellonian University Medical College, Kraków, Poland.

A Skórkowska (A)

Department of Toxicological Biochemistry, Jagiellonian University Medical College, Kraków, Poland.
BioImaging Laboratory, Centre for the Development of Therapies for Civilizational and Age-Related Diseases (CDT-CARD), Kraków, Poland.

B Budziszewska (B)

Department of Toxicological Biochemistry, Jagiellonian University Medical College, Kraków, Poland.

J Pera (J)

Department of Neurology, Jagiellonian University Medical College, Kraków, Poland. joanna.pera@uj.edu.pl.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH