p38α deficiency ameliorates psoriasis development by downregulating STAT3-mediated keratinocyte proliferation and cytokine production.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
15 Aug 2024
Historique:
received: 26 02 2024
accepted: 08 08 2024
medline: 16 8 2024
pubmed: 16 8 2024
entrez: 15 8 2024
Statut: epublish

Résumé

Psoriasis is characterized by keratinocyte (KC) hyperproliferation and inflammatory cell infiltration, but the mechanisms remain unclear. In an imiquimod-induced mouse psoriasiform model, p38 activity is significantly elevated in KCs and p38α specific deletion in KCs ameliorates skin inflammation. p38α signaling promotes KC proliferation and psoriasis-related proinflammatory gene expression during psoriasis development. Mechanistically, p38α enhances KC proliferation and production of inflammatory cytokines and chemokines by activating STAT3. While p38α signaling in KCs does not affect the expression of IL-23 and IL-17, it substantially amplifies the IL-23/IL-17 pathogenic axis in psoriasis. The therapeutic effect of IL-17 neutralization is associated with decreased p38 and STAT3 activities in KCs and targeting the p38α-STAT3 axis in KCs ameliorates the severity of psoriasis. As IL-17 also highly activates p38 and STAT3 in KCs, our findings reveal a sustained signaling circuit important for psoriasis development, highlighting p38α-STAT3 axis as an important target for psoriasis treatment.

Identifiants

pubmed: 39147860
doi: 10.1038/s42003-024-06700-w
pii: 10.1038/s42003-024-06700-w
doi:

Substances chimiques

STAT3 Transcription Factor 0
Mitogen-Activated Protein Kinase 14 EC 2.7.11.24
Stat3 protein, mouse 0
Cytokines 0
Interleukin-17 0
Imiquimod P1QW714R7M

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

999

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32341004, 82371758, 31670897
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82001702
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82200821
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 81971329

Informations de copyright

© 2024. The Author(s).

Références

Ghoreschi, K., Balato, A., Enerback, C. & Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 397, 754–766 (2021).
pubmed: 33515492 doi: 10.1016/S0140-6736(21)00184-7
Zhou, X., Chen, Y., Cui, L., Shi, Y. & Guo, C. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis. 13, 81 (2022).
pubmed: 35075118 pmcid: 8786887 doi: 10.1038/s41419-022-04523-3
Lowes, M. A., Suarez-Farinas, M. & Krueger, J. G. Immunology of psoriasis. Annu. Rev. Immunol. 32, 227–255 (2014).
pubmed: 24655295 pmcid: 4229247 doi: 10.1146/annurev-immunol-032713-120225
Dainichi, T. et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat. Immunol. 19, 1286–1298 (2018).
pubmed: 30446754 doi: 10.1038/s41590-018-0256-2
van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).
pubmed: 19380832 doi: 10.4049/jimmunol.0802999
Zheng, Y. et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).
pubmed: 17187052 doi: 10.1038/nature05505
Albanesi, C., Madonna, S., Gisondi, P. & Girolomoni, G. The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front. Immunol. 9, 1549 (2018).
pubmed: 30034395 pmcid: 6043636 doi: 10.3389/fimmu.2018.01549
Trompette, A. & Ubags, N. D. Skin barrier immunology from early life to adulthood. Mucosal Immunol. 16, 194–207 (2023).
pubmed: 36868478 doi: 10.1016/j.mucimm.2023.02.005
Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).
pubmed: 17873860 doi: 10.1038/nature06116
Ganguly, D. et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 206, 1983–1994 (2009).
pubmed: 19703986 pmcid: 2737167 doi: 10.1084/jem.20090480
Hawkes, J. E., Chan, T. C. & Krueger, J. G. Psoriasis pathogenesis and the development of novel targeted immune therapies. J. Allergy Clin. Immunol. 140, 645–653 (2017).
pubmed: 28887948 pmcid: 5600287 doi: 10.1016/j.jaci.2017.07.004
Morizane, S. & Gallo, R. L. Antimicrobial peptides in the pathogenesis of psoriasis. J. Dermatol. 39, 225–230 (2012).
pubmed: 22352846 pmcid: 3527011 doi: 10.1111/j.1346-8138.2011.01483.x
Greb, J. E. et al. Psoriasis. Nat. Rev. Dis. Prim. 2, 16082 (2016).
pubmed: 27883001 doi: 10.1038/nrdp.2016.82
Arthur, J. S. & Ley, S. C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679–692 (2013).
pubmed: 23954936 doi: 10.1038/nri3495
Mavropoulos, A., Rigopoulou, E. I., Liaskos, C., Bogdanos, D. P. & Sakkas, L. I. The role of p38 MAPK in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin. Dev. Immunol. 2013, 569751 (2013).
pubmed: 24151518 pmcid: 3787653 doi: 10.1155/2013/569751
Johansen, C. et al. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br. J. Dermatol. 152, 37–42 (2005).
pubmed: 15656798 doi: 10.1111/j.1365-2133.2004.06304.x
Yu, X. J. et al. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp. Mol. Pathol. 83, 413–418 (2007).
pubmed: 17599830 doi: 10.1016/j.yexmp.2007.05.002
Soegaard-Madsen, L., Johansen, C., Iversen, L. & Kragballe, K. Adalimumab therapy rapidly inhibits p38 mitogen-activated protein kinase activity in lesional psoriatic skin preceding clinical improvement. Br. J. Dermatol 162, 1216–1223 (2010).
pubmed: 20346019 doi: 10.1111/j.1365-2133.2010.09706.x
Zheng, T. et al. p38alpha signaling in Langerhans cells promotes the development of IL-17-producing T cells and psoriasiform skin inflammation. Sci. Signal. 11, eaao1685 (2018).
pubmed: 29535261 doi: 10.1126/scisignal.aao1685
Zhao, W. et al. MAPK phosphatase-1 deficiency exacerbates the severity of imiquimod-induced psoriasiform skin disease. Front. Immunol. 9, 569 (2018).
pubmed: 29619028 pmcid: 5873221 doi: 10.3389/fimmu.2018.00569
Kjellerup, R. B., Johansen, C., Kragballe, K. & Iversen, L. The expression of dual-specificity phosphatase 1 mRNA is downregulated in lesional psoriatic skin. Br. J. Dermatol. 168, 339–345 (2013).
pubmed: 22924482 doi: 10.1111/bjd.12020
Mihara, K., Elliott, G. R., Boots, A. M. & Nelissen, R. L. Inhibition of p38 kinase suppresses the development of psoriasis-like lesions in a human skin transplant model of psoriasis. Br. J. Dermatol. 167, 455–457 (2012).
pubmed: 22413906 doi: 10.1111/j.1365-2133.2012.10939.x
Sakurai, K. et al. Cutaneous p38 mitogen-activated protein kinase activation triggers psoriatic dermatitis. J. Allergy Clin. Immunol. 144, 1036–1049 (2019).
pubmed: 31378305 doi: 10.1016/j.jaci.2019.06.019
Sumer, C., Boz Er, A. B. & Dincer, T. Keratin 14 is a novel interaction partner of keratinocyte differentiation regulator: receptor-interacting protein kinase 4. Turk. J. Biol. 43, 225–234 (2019).
pubmed: 31582880 pmcid: 6713913 doi: 10.3906/biy-1904-37
Tortola, L. et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J. Clin. Invest. 122, 3965–3976 (2012).
pubmed: 23064362 pmcid: 3484446 doi: 10.1172/JCI63451
Sugiura, K. Role of interleukin 36 in generalised pustular psoriasis and beyond. Dermatol. Ther. (Heidelb.) 12, 315–328 (2022).
pubmed: 35060076 doi: 10.1007/s13555-021-00677-8
Watanabe, H. et al. Functional characterization of IL-17F as a selective neutrophil attractant in psoriasis. J. Invest. Dermatol. 129, 650–656 (2009).
pubmed: 18830271 doi: 10.1038/jid.2008.294
Johnston, A. et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J. Immunol. 190, 2252–2262 (2013).
pubmed: 23359500 doi: 10.4049/jimmunol.1201505
Senra, L. et al. Keratinocyte-derived IL-17E contributes to inflammation in psoriasis. J. Invest. Dermatol. 136, 1970–1980 (2016).
pubmed: 27329229 doi: 10.1016/j.jid.2016.06.009
Ni, X. et al. IL-17D-induced inhibition of DDX5 expression in keratinocytes amplifies IL-36R-mediated skin inflammation. Nat. Immunol. 23, 1577–1587 (2022).
pubmed: 36271146 pmcid: 9663298 doi: 10.1038/s41590-022-01339-3
Kastelan, M., Prpic-Massari, L. & Brajac, I. Apoptosis in psoriasis. Acta Dermatovenerol. Croat. 17, 182–186 (2009).
pubmed: 19818217
Singh, T. P., Zhang, H. H., Hwang, S. T. & Farber, J. M. IL-23- and imiquimod-induced models of experimental psoriasis in mice. Curr. Protoc. Immunol. 125, e71 (2019).
pubmed: 30615272 doi: 10.1002/cpim.71
Martin, D. A. et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J. Invest. Dermatol. 133, 17–26 (2013).
pubmed: 22673731 doi: 10.1038/jid.2012.194
Veras, F. P. et al. Pyruvate kinase M2 mediates IL-17 signaling in keratinocytes driving psoriatic skin inflammation. Cell Rep. 41, 111897 (2022).
pubmed: 36577385 doi: 10.1016/j.celrep.2022.111897
Fukada, S. et al. Sunitinib promotes apoptosis via p38 MAPK activation and STAT3 downregulation in oral keratinocytes. Oral Dis. 30, 639–649 (2022).
doi: 10.1111/odi.14457
Kolli, S. S., Kepley, A. L., Cline, A. & Feldman, S. R. A safety review of recent advancements in the treatment of psoriasis: analysis of clinical trial safety data. Expert Opin. Drug Saf. 18, 523–536 (2019).
pubmed: 31046481 doi: 10.1080/14740338.2019.1614561
Smolen, J. E. et al. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J. Biol. Chem. 275, 15876–15884 (2000).
pubmed: 10748078 doi: 10.1074/jbc.M906232199
Tandon, R., Sha’afi, R. I. & Thrall, R. S. Neutrophil beta2-integrin upregulation is blocked by a p38 MAP kinase inhibitor. Biochem. Biophys. Res. Commun. 270, 858–862 (2000).
pubmed: 10772916 doi: 10.1006/bbrc.2000.2540
Yan, W. et al. Role of p38 MAPK in ICAM-1 expression of vascular endothelial cells induced by lipopolysaccharide. Shock 17, 433–438 (2002).
pubmed: 12022767 doi: 10.1097/00024382-200205000-00016
Hidalgo, A., Peired, A. J., Wild, M., Vestweber, D. & Frenette, P. S. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26, 477–489 (2007).
pubmed: 17442598 pmcid: 4080624 doi: 10.1016/j.immuni.2007.03.011
Liu, X. et al. Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nat. Immunol. 13, 457–464 (2012).
pubmed: 22447027 pmcid: 3330201 doi: 10.1038/ni.2258
Molinar-Inglis, O. et al. Phosphoproteomic analysis of thrombin- and p38 MAPK-regulated signaling networks in endothelial cells. J. Biol. Chem. 298, 101801 (2022).
pubmed: 35257745 pmcid: 8987612 doi: 10.1016/j.jbc.2022.101801
Bae, H. C. et al. RIP4 upregulates CCL20 expression through STAT3 signalling in cultured keratinocytes. Exp. Dermatol. 27, 1126–1133 (2018).
pubmed: 30044012 doi: 10.1111/exd.13750
Zhao, L., Xia, J., Wang, X. & Xu, F. Transcriptional regulation of CCL20 expression. Microbes Infect. 16, 864–870 (2014).
pubmed: 25130722 doi: 10.1016/j.micinf.2014.08.005
Kanda, N. et al. Prolactin enhances basal and IL-17-induced CCL20 production by human keratinocytes. Eur. J. Immunol. 39, 996–1006 (2009).
pubmed: 19350575 doi: 10.1002/eji.200838852
Li, H. et al. Cyr61/CCN1 induces CCL20 production by keratinocyte via activating p38 and JNK/AP-1 pathway in psoriasis. J. Dermatol. Sci. 88, 46–56 (2017).
pubmed: 28602508 doi: 10.1016/j.jdermsci.2017.05.018
Zheng, T. et al. Protein kinase p38alpha signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proc. Natl Acad. Sci. USA 115, E12313–E12322 (2018).
pubmed: 30541887 pmcid: 6310843 doi: 10.1073/pnas.1814705115
Kanemaru, K. et al. Phospholipase Cdelta1 regulates p38 MAPK activity and skin barrier integrity. Cell Death Differ. 24, 1079–1090 (2017).
pubmed: 28430185 pmcid: 5442475 doi: 10.1038/cdd.2017.56
Mose, M., Kang, Z., Raaby, L., Iversen, L. & Johansen, C. TNFalpha- and IL-17A-mediated S100A8 expression is regulated by p38 MAPK. Exp. Dermatol. 22, 476–481 (2013).
pubmed: 23800059 doi: 10.1111/exd.12187
Johansen, C., Bertelsen, T., Ljungberg, C., Mose, M. & Iversen, L. Characterization of TNF-alpha- and IL-17A-mediated synergistic induction of DEFB4 gene expression in human keratinocytes through IkappaBzeta. J. Invest. Dermatol. 136, 1608–1616 (2016).
pubmed: 27117051 doi: 10.1016/j.jid.2016.04.012
Lee, J. H. et al. NJK14047 inhibition of p38 MAPK ameliorates inflammatory immune diseases by suppressing T cell differentiation. Int. Immunopharmacol. 130, 111800 (2024).
pubmed: 38447416 doi: 10.1016/j.intimp.2024.111800
Schindler, J. F., Monahan, J. B. & Smith, W. G. p38 pathway kinases as anti-inflammatory drug targets. J. Dent. Res. 86, 800–811 (2007).
pubmed: 17720847 doi: 10.1177/154405910708600902
Kim, C. et al. The kinase p38 alpha serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat. Immunol. 9, 1019–1027 (2008).
pubmed: 18677317 pmcid: 2587092 doi: 10.1038/ni.1640
Nishida, K. et al. p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol. Cell. Biol. 24, 10611–10620 (2004).
pubmed: 15572667 pmcid: 533965 doi: 10.1128/MCB.24.24.10611-10620.2004
Huang, G. et al. Signaling via the kinase p38alpha programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nat. Immunol. 13, 152–161 (2012).
pubmed: 22231518 pmcid: 3262925 doi: 10.1038/ni.2207
Huang, S. et al. Involvement of epithelial Wntless in the regulation of postnatal hair follicle morphogenesis. Arch. Dermatol. Res. 307, 835–839 (2015).
pubmed: 26156041 doi: 10.1007/s00403-015-1587-6
Sakamoto, K., Goel, S., Funakoshi, A., Honda, T. & Nagao, K. Flow cytometry analysis of the subpopulations of mouse keratinocytes and skin immune cells. STAR Protoc. 3, 101052 (2022).
pubmed: 34977690 doi: 10.1016/j.xpro.2021.101052

Auteurs

Tingting Zheng (T)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China. ting616119@163.com.

Jiaqi Deng (J)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Jiahong Wen (J)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Shuxiu Xiao (S)

Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Haiyong Huang (H)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Jiawen Shang (J)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Luwen Zhang (L)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Huan Chen (H)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Jingyu Li (J)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Yanyan Wang (Y)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Suidong Ouyang (S)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Meng Yang (M)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.

Kinya Otsu (K)

Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
Cardiovascular Division, King's College London, London, UK.

Xinguang Liu (X)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, China.

Gonghua Huang (G)

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China. gonghua.huang@gdmu.edu.cn.
Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. gonghua.huang@gdmu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH