Screening persistent organic pollutants for effects on testosterone and estrogen synthesis at human-relevant concentrations using H295R cells in 96-well plates.
Humans
Testosterone
/ biosynthesis
Persistent Organic Pollutants
/ metabolism
Endocrine Disruptors
/ toxicity
Cell Survival
/ drug effects
Polychlorinated Biphenyls
/ toxicity
Halogenated Diphenyl Ethers
/ toxicity
Estradiol
/ metabolism
Estrogens
Cell Line
Pesticides
/ toxicity
Hydrocarbons, Chlorinated
/ toxicity
Endocrine disruption
Exposome
H295R
OECD TG#456
POPs
Steroidogenesis
Journal
Cell biology and toxicology
ISSN: 1573-6822
Titre abrégé: Cell Biol Toxicol
Pays: Switzerland
ID NLM: 8506639
Informations de publication
Date de publication:
13 Aug 2024
13 Aug 2024
Historique:
received:
12
03
2024
accepted:
18
07
2024
medline:
13
8
2024
pubmed:
13
8
2024
entrez:
13
8
2024
Statut:
epublish
Résumé
Many persistent organic pollutants (POPs) are suspected endocrine disruptors and it is important to investigate their effects at low concentrations relevant to human exposure. Here, the OECD test guideline #456 steroidogenesis assay was downscaled to a 96-well microplate format to screen 24 POPs for their effects on viability, and testosterone and estradiol synthesis using the human adrenocortical cell line H295R. The compounds (six polyfluoroalkyl substances, five organochlorine pesticides, ten polychlorinated biphenyls and three polybrominated diphenyl ethers) were tested at human-relevant levels (1 nM to 10 µM). Increased estradiol synthesis, above the OECD guideline threshold of 1.5-fold solvent control, was shown after exposure to 10 µM PCB-156 (153%) and PCB-180 (196%). Interestingly, the base hormone synthesis varied depending on the cell batch. An alternative data analysis using a linear mixed-effects model that include multiple independent experiments and considers batch-dependent variation was therefore applied. This approach revealed small but statistically significant effects on estradiol or testosterone synthesis for 17 compounds. Increased testosterone levels were demonstrated even at 1 nM for PCB-74 (18%), PCB-99 (29%), PCB-118 (16%), PCB-138 (19%), PCB-180 (22%), and PBDE-153 (21%). The MTT assay revealed significant effects on cell viability after exposure to 1 nM of perfluoroundecanoic acid (12%), 3 nM PBDE-153 (9%), and 10 µM of PCB-156 (6%). This shows that some POPs can interfere with endocrine signaling at concentrations found in human blood, highlighting the need for further investigation into the toxicological mechanisms of POPs and their mixtures at low concentrations relevant to human exposure.
Identifiants
pubmed: 39136868
doi: 10.1007/s10565-024-09902-4
pii: 10.1007/s10565-024-09902-4
doi:
Substances chimiques
Testosterone
3XMK78S47O
Persistent Organic Pollutants
0
Endocrine Disruptors
0
Polychlorinated Biphenyls
DFC2HB4I0K
Halogenated Diphenyl Ethers
0
Estradiol
4TI98Z838E
Estrogens
0
Pesticides
0
Hydrocarbons, Chlorinated
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
69Subventions
Organisme : Svenska Forskningsrådet Formas
ID : 2018-02268
Organisme : Svenska Forskningsrådet Formas
ID : 2018-02268
Organisme : Svenska Forskningsrådet Formas
ID : 2018-02268
Organisme : Svenska Forskningsrådet Formas
ID : 2018-02268
Organisme : Svenska Forskningsrådet Formas
ID : 2018-02268
Informations de copyright
© 2024. The Author(s).
Références
Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67:1–48. https://doi.org/10.18637/jss.v067.i01 .
doi: 10.18637/jss.v067.i01
Behr A-C, Lichtenstein D, Braeuning A, Lampen A, Buhrke T. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol Lett. 2018;291:51–60. https://doi.org/10.1016/j.toxlet.2018.03.029 .
doi: 10.1016/j.toxlet.2018.03.029
pubmed: 29601859
Björvang RD, Vinnars M-T, Papadogiannakis N, Gidlöf S, Mamsen LS, Mucs D, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Andersen CY, Damdimopoulou P. Mixtures of persistent organic pollutants are found in vital organs of late gestation human fetuses. Chemosphere. 2021;283:131125. https://doi.org/10.1016/j.chemosphere.2021.131125 .
doi: 10.1016/j.chemosphere.2021.131125
pubmed: 34467953
Bondy GS, Newsome WH, Armstrong CL, Suzuki CAM, Doucet J, Fernie S, Hierlihy SL, Feeley MM, Barker MG. trans-Nonachlor and cis-Nonachlor Toxicity in Sprague-Dawley Rats: Comparison with Technical Chlordane. Toxicol Sci. 2000;58:386–98. https://doi.org/10.1093/toxsci/58.2.386 .
doi: 10.1093/toxsci/58.2.386
pubmed: 11099650
Cassidy RA, Vorhees CV, Minnema DJ, Hastings L. The Effects of Chlordane Exposure during Pre- and Postnatal Periods at Environmentally Relevant Levels on Sex Steroid-Mediated Behaviors and Functions in the Rat. Toxicol Appl Pharmacol. 1994;126:326–37. https://doi.org/10.1006/taap.1994.1123 .
doi: 10.1006/taap.1994.1123
pubmed: 8209386
Donat-Vargas C, Åkesson A, Tornevi A, Wennberg M, Sommar J, Kiviranta H, Rantakokko P, Bergdahl IA. Persistent Organochlorine Pollutants in Plasma, Blood Pressure, and Hypertension in a Longitudinal Study. Hypertens Dallas Tex. 2018;1979(71):1258–68. https://doi.org/10.1161/HYPERTENSIONAHA.117.10691 .
doi: 10.1161/HYPERTENSIONAHA.117.10691
Du G, Hu J, Huang H, Qin Y, Han X, Wu D, Song L, Xia Y, Wang X. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo. Environ Toxicol Chem. 2013;32:353–60. https://doi.org/10.1002/etc.2034 .
doi: 10.1002/etc.2034
pubmed: 23074026
Du G, Huang H, Hu J, Qin Y, Wu D, Song L, Xia Y, Wang X. Endocrine-related effects of perfluorooctanoic acid (PFOA) in zebrafish, H295R steroidogenesis and receptor reporter gene assays. Chemosphere. 2013;91:1099–106. https://doi.org/10.1016/j.chemosphere.2013.01.012 .
doi: 10.1016/j.chemosphere.2013.01.012
pubmed: 23399300
Duranova H, Fialkova V, Valkova V, Bilcikova J, Olexikova L, Lukac N, Massanyi P, Knazicka Z. Human adrenocortical carcinoma cell line (NCI-H295R): An in vitro screening model for the assessment of endocrine disruptors’ actions on steroidogenesis with an emphasis on cell ultrastructural features. Acta Histochem. 2022;124:151912. https://doi.org/10.1016/j.acthis.2022.151912 .
doi: 10.1016/j.acthis.2022.151912
pubmed: 35661985
Emmett EA, Shofer FS, Zhang H, Freeman D, Desai C, Shaw LM. Community Exposure to Perfluorooctanoate: Relationships Between Serum Concentrations and Exposure Sources. J Occup Environ Med. 2006;48:759. https://doi.org/10.1097/01.jom.0000232486.07658.74 .
doi: 10.1097/01.jom.0000232486.07658.74
pubmed: 16902368
pmcid: 3038253
Encarnação T, Pais AA, Campos MG, Burrows HD. Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. Sci Prog. 2019;102:3–42. https://doi.org/10.1177/0036850419826802 .
doi: 10.1177/0036850419826802
pubmed: 31829784
pmcid: 10424550
Fischer FC, Henneberger L, König M, Bittermann K, Linden L, Goss K-U, Escher BI. Modeling Exposure in the Tox21 in Vitro Bioassays. Chem Res Toxicol. 2017;30:1197–208. https://doi.org/10.1021/acs.chemrestox.7b00023 .
doi: 10.1021/acs.chemrestox.7b00023
pubmed: 28316234
Galecki BTW, Welch KB, Andrzej T (2006) Linear Mixed Models: A Practical Guide Using Statistical Software. Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781420010435
Ghasemi M, Liang S, Luu QM, Kempson I (2023) The MTT Assay: A Method for Error Minimization and Interpretation in Measuring Cytotoxicity and Estimating Cell Viability. In: Friedrich O, Gilbert DF (Eds.), Cell Viability Assays: Methods and Protocols, Methods in Molecular Biology. Springer US, New York, NY, pp. 15–33. https://doi.org/10.1007/978-1-0716-3052-5_2
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36:E1–150. https://doi.org/10.1210/er.2015-1010 .
doi: 10.1210/er.2015-1010
pubmed: 26544531
pmcid: 4702494
Gregoraszczuk EŁ, Rak A, Kawalec K, Ropstad E. Steroid secretion following exposure of ovarian follicular cells to single congeners and defined mixture of polybrominateddibenzoethers (PBDEs), p, p′-DDT and its metabolite p, p′-DDE. Toxicol Lett. 2008;178:103–9. https://doi.org/10.1016/j.toxlet.2008.02.011 .
doi: 10.1016/j.toxlet.2008.02.011
pubmed: 18406082
Haggard DE, Karmaus AL, Martin MT, Judson RS, Setzer RW, Paul Friedman K. High-Throughput H295R Steroidogenesis Assay: Utility as an Alternative and a Statistical Approach to Characterize Effects on Steroidogenesis. Toxicol Sci. 2018;162:509–34. https://doi.org/10.1093/toxsci/kfx274 .
doi: 10.1093/toxsci/kfx274
pubmed: 29216406
Hecker M, Newsted JL, Murphy MB, Higley EB, Jones PD, Wu R, Giesy JP. Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: Hormone production. Toxicol Appl Pharmacol. 2006;217:114–24. https://doi.org/10.1016/j.taap.2006.07.007 .
doi: 10.1016/j.taap.2006.07.007
pubmed: 16962624
Hecker M, Hollert H, Cooper R, Vinggaard AM, Akahori Y, Murphy M, Nellemann C, Higley E, Newsted J, Laskey J, Buckalew A, Grund S, Maletz S, Giesy J, Timm G. The OECD validation program of the H295R steroidogenesis assay: Phase 3. Final inter-laboratory validation study. Environ Sci Pollut Res. 2011;18:503–15. https://doi.org/10.1007/s11356-010-0396-x .
doi: 10.1007/s11356-010-0396-x
Källsten L, Pierozan P, Martin JW, Karlsson O. Di-n-Butyl Phthalate and Its Monoester Metabolite Impairs Steroid Hormone Biosynthesis in Human Cells: Mechanistic In Vitro Studies. Cells. 2022;11:3029. https://doi.org/10.3390/cells11193029 .
doi: 10.3390/cells11193029
pubmed: 36230992
pmcid: 9561974
Kang JS, Choi J-S, Park J-W. Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells. Chemosphere. 2016;155:436–43. https://doi.org/10.1016/j.chemosphere.2016.04.070 .
doi: 10.1016/j.chemosphere.2016.04.070
pubmed: 27139122
Karlsson O. Chemical safety and the exposome. Emerg Contam. 2023;9:100225. https://doi.org/10.1016/j.emcon.2023.100225 .
doi: 10.1016/j.emcon.2023.100225
Karpeta A, Rak-Mardyła A, Jerzak J, Gregoraszczuk EL. Congener-specific action of PBDEs on steroid secretion, CYP17, 17β-HSD and CYP19 activity and protein expression in porcine ovarian follicles. Toxicol Lett. 2011;206:258–63. https://doi.org/10.1016/j.toxlet.2011.08.005 .
doi: 10.1016/j.toxlet.2011.08.005
pubmed: 21871953
Katsikantami I, Iatrou EI, Tzatzarakis MN, Kalantzi O-I (2024) Polychlorinated biphenyls (PCBs). In: Wexler P. (Ed.), Encyclopedia of Toxicology (Fourth Edition). Academic Press, Oxford, pp. 827–833. https://doi.org/10.1016/B978-0-12-824315-2.00828-9
Kraugerud M, Zimmer KE, Dahl E, Berg V, Olsaker I, Farstad W, Ropstad E, Verhaegen S. Three Structurally Different Polychlorinated Biphenyl Congeners (Pcb 118, 153, and 126) Affect Hormone Production and Gene Expression in the Human H295R In Vitro Model. J Toxicol Environ Health A. 2010;73:1122–32. https://doi.org/10.1080/15287394.2010.484338 .
doi: 10.1080/15287394.2010.484338
pubmed: 20574914
Kraugerud M, Zimmer KE, Ropstad E, Verhaegen S. Perfluorinated compounds differentially affect steroidogenesis and viability in the human adrenocortical carcinoma (H295R) in vitro cell assay. Toxicol Lett. 2011;205:62–8. https://doi.org/10.1016/j.toxlet.2011.05.230 .
doi: 10.1016/j.toxlet.2011.05.230
pubmed: 21641976
Krueger C, Tian L. A Comparison of the General Linear Mixed Model and Repeated Measures ANOVA Using a Dataset with Multiple Missing Data Points. Biol Res Nurs. 2004;6:151–7. https://doi.org/10.1177/1099800404267682 .
doi: 10.1177/1099800404267682
pubmed: 15388912
Kurlbaum M, Sbiera S, Kendl S, Fassnacht MM, Kroiss M. Steroidogenesis in the NCI-H295 Cell Line Model is Strongly Affected By Culture Conditions and Substrain. Exp Clin Endocrinol Diabetes. 2020;128:672–80. https://doi.org/10.1055/a-1105-6332 .
doi: 10.1055/a-1105-6332
pubmed: 32349159
La Merrill M, Emond C, Kim MJ, Antignac J-P, Le Bizec B, Clément K, Birnbaum LS, Barouki R. Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants. Environ Health Perspect. 2013;121:162–9. https://doi.org/10.1289/ehp.1205485 .
doi: 10.1289/ehp.1205485
pubmed: 23221922
Mlynarcikova A, Fickova M, Scsukova S. Impact of endocrine disruptors on ovarian steroidogenesis. Endocr Regul. 2014;48:201–24. https://doi.org/10.4149/endo_2014_04_201 .
doi: 10.4149/endo_2014_04_201
pubmed: 25512194
Norberg M, Wall S, Boman K, Weinehall L. The Västerbotten Intervention Programme: background, design and implications. Glob Health Action. 2010;3:4643. https://doi.org/10.3402/gha.v3i0.4643 .
doi: 10.3402/gha.v3i0.4643
OECD (2023) Test No. 456: H295R Steroidogenesis Assay
Patinha Caldeira C, Farcal R, Moretti C, Mancini L, Rauscher H, Rasmussen K, Riego Sintes JSala S (2022) Safe and Sustainable by Design chemicals and materials Review of safety and sustainability dimensions, aspects, methods, indicators, and tools. https://doi.org/10.2760/879069
Pierozan P, Kosnik M, Karlsson O. High-content analysis shows synergistic effects of low perfluorooctanoic acid (PFOS) and perfluorooctane sulfonic acid (PFOA) mixture concentrations on human breast epithelial cell carcinogenesis. Environ Int. 2023;172:107746. https://doi.org/10.1016/j.envint.2023.107746 .
doi: 10.1016/j.envint.2023.107746
pubmed: 36731186
Rak A, Zajda K, Gregoraszczuk EŁ. Endocrine disrupting compounds modulates adiponectin secretion, expression of its receptors and action on steroidogenesis in ovarian follicle. Reprod Toxicol. 2017;69:204–11. https://doi.org/10.1016/j.reprotox.2017.03.004 .
doi: 10.1016/j.reprotox.2017.03.004
pubmed: 28284726
Rosenmai AK, Taxvig C, Svingen T, Trier X, van Vugt-Lussenburg BMA, Pedersen M, Lesné L, Jégou B, Vinggaard AM. Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro. Andrology. 2016;4:662–72. https://doi.org/10.1111/andr.12190 .
doi: 10.1111/andr.12190
pubmed: 27152447
Running L, Atilla-Gokcumen GE, Aga DS. Development of a Liquid Chromatography-Mass Spectrometry-Based In Vitro Assay to Assess Changes in Steroid Hormones Due to Exposure to Per- and Polyfluoroalkyl Substances. Chem Res Toxicol. 2022;35:1277–88. https://doi.org/10.1021/acs.chemrestox.2c00116 .
doi: 10.1021/acs.chemrestox.2c00116
pubmed: 35696490
Stadnicka-Michalak J, Tanneberger K, Schirmer K, Ashauer R. Measured and Modeled Toxicokinetics in Cultured Fish Cells and Application to In Vitro - In Vivo Toxicity Extrapolation. PLOS ONE. 2014;9:e92303. https://doi.org/10.1371/journal.pone.0092303 .
doi: 10.1371/journal.pone.0092303
pubmed: 24647349
pmcid: 3960223
Stockholm Convention on Persistent Organic Pollutants (2016) Risk profile for PFOA, its salts and PFOA-related compounds. Rome
Tinwell H, Karmaus A, Gaskell V, Gomes C, Grant C, Holmes T, Jonas A, Kellum S, Krüger K, Malley L, Melching-Kollmuss S, Mercier O, Pandya H, Placke T, Settivari R, De Waen B. Evaluating H295R steroidogenesis assay data for robust interpretation. Regul Toxicol Pharmacol. 2023;143:105461. https://doi.org/10.1016/j.yrtph.2023.105461 .
doi: 10.1016/j.yrtph.2023.105461
pubmed: 37490962
Tremoen NH, Fowler PA, Ropstad E, Verhaegen S, Krogenæs A. Exposure to the Three Structurally Different PCB Congeners (PCB 118, 153, and 126) Results in Decreased Protein Expression and Altered Steroidogenesis in the Human Adrenocortical Carcinoma Cell Line H295R. J Toxicol Environ Health A. 2014;77:516–34. https://doi.org/10.1080/15287394.2014.886985 .
doi: 10.1080/15287394.2014.886985
pubmed: 24754389
US Environmental Protection Agency, Office of Water (2024) Human health toxicity assessment for perfluorooctanoic acid (PFOA) and related salts (EPA Document No. 815R24006). Washington, DC.
van den Dungen MW, Rijk JCW, Kampman E, Steegenga WT, Murk AJ. Steroid hormone related effects of marine persistent organic pollutants in human H295R adrenocortical carcinoma cells. Toxicol In Vitro. 2015;29:769–78. https://doi.org/10.1016/j.tiv.2015.03.002 .
doi: 10.1016/j.tiv.2015.03.002
pubmed: 25765474
van Duursen MBM, Boberg J, Christiansen S, Connolly L, Damdimopoulou P, Filis P, Fowler PA, Gadella BM, Holte J, Jääger K, Johansson HKL, Li T, Mazaud-Guittot S, Parent A-S, Salumets A, Soto AM, Svingen T, Velthut-Meikas A, Bay Wedebye E, Xie Y, van den Berg M. Safeguarding Female Reproductive Health Against Endocrine Disrupting Chemicals—The FREIA Project. Int J Mol Sci. 2020;21:3215. https://doi.org/10.3390/ijms21093215 .
doi: 10.3390/ijms21093215
pubmed: 32370092
pmcid: 7246859
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee D-H, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocr Rev. 2012;33:378–455. https://doi.org/10.1210/er.2011-1050 .
doi: 10.1210/er.2011-1050
pubmed: 22419778
pmcid: 3365860
Vermeulen R, Schymanski EL, Barabási A-L, Miller GW. The exposome and health: where chemistry meets biology. Science. 2020;367:392–6. https://doi.org/10.1126/science.aay3164 .
doi: 10.1126/science.aay3164
pubmed: 31974245
pmcid: 7227413
Wang C, Ruan T, Liu J, He B, Zhou Q, Jiang G. Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway. Chem Res Toxicol. 2015;28:848–54. https://doi.org/10.1021/tx5004563 .
doi: 10.1021/tx5004563
pubmed: 25871633