Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 Jul 2024
21 Jul 2024
Historique:
received:
19
01
2023
accepted:
12
07
2024
medline:
22
7
2024
pubmed:
22
7
2024
entrez:
21
7
2024
Statut:
epublish
Résumé
Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.
Identifiants
pubmed: 39034312
doi: 10.1038/s41467-024-50454-2
pii: 10.1038/s41467-024-50454-2
doi:
Substances chimiques
Glutathione
GAN16C9B8O
NF-E2-Related Factor 2
0
Glutamate-Cysteine Ligase
EC 6.3.2.2
Nfe2l2 protein, mouse
0
Triglycerides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6152Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R01CA269813, R37CA230042,
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : R01AI150698
Informations de copyright
© 2024. The Author(s).
Références
Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).
pubmed: 35190722
doi: 10.1038/s41580-022-00456-z
Sun, Y. et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 37, 101696 (2020).
pubmed: 32950427
pmcid: 7767745
doi: 10.1016/j.redox.2020.101696
Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).
pubmed: 32231263
doi: 10.1038/s41580-020-0230-3
Lennicke, C. & Cocheme, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).
pubmed: 34547234
doi: 10.1016/j.molcel.2021.08.018
Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).
pubmed: 34194012
pmcid: 8243062
doi: 10.1038/s41573-021-00233-1
Winterbourn, C. C. & Hampton, M. B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549–561 (2008).
pubmed: 18544350
doi: 10.1016/j.freeradbiomed.2008.05.004
Park, J. O. et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat. Chem. Biol. https://doi.org/10.1038/nchembio.2077 (2016).
Telorack, M. et al. A glutathione-Nrf2-thioredoxin cross-talk ensures keratinocyte survival and efficient wound repair. PLoS Genet 12, e1005800 (2016).
pubmed: 26808544
pmcid: 4726503
doi: 10.1371/journal.pgen.1005800
Mak, T. W. et al. Glutathione primes T cell metabolism for inflammation. Immunity 46, 1089–1090 (2017).
pubmed: 28636957
doi: 10.1016/j.immuni.2017.06.009
Lian, G. et al. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. Elife 7. https://doi.org/10.7554/eLife.36158 (2018).
Kurniawan, H. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 31, 920–936 e927 (2020).
pubmed: 32213345
pmcid: 7265172
doi: 10.1016/j.cmet.2020.03.004
Franchina, D. G. et al. Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nat. Commun. 13, 1789 (2022).
pubmed: 35379825
pmcid: 8980022
doi: 10.1038/s41467-022-29426-x
Okuno, Y. et al. Oxidative stress inhibits healthy adipose expansion through suppression of SREBF1-mediated lipogenic pathway. Diabetes 67, 1113–1127 (2018).
pubmed: 29618580
doi: 10.2337/db17-1032
Shi, Z. Z. et al. Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc. Natl Acad. Sci. Usa. 97, 5101–5106 (2000).
pubmed: 10805773
pmcid: 25788
doi: 10.1073/pnas.97.10.5101
Dalton, T. P., Dieter, M. Z., Yang, Y., Shertzer, H. G. & Nebert, D. W. Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem. Biophys. Res. Commun. 279, 324–329 (2000).
pubmed: 11118286
doi: 10.1006/bbrc.2000.3930
Winkler, A. et al. Glutathione is essential for early embryogenesis–analysis of a glutathione synthetase knockout mouse. Biochem Biophys. Res Commun. 412, 121–126 (2011).
pubmed: 21802407
doi: 10.1016/j.bbrc.2011.07.056
Yang, Y. et al. Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J. Biol. Chem. 277, 49446–49452 (2002).
pubmed: 12384496
doi: 10.1074/jbc.M209372200
Giordano, G. et al. Neurotoxicity of domoic Acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Mol. Pharm. 70, 2116–2126 (2006).
doi: 10.1124/mol.106.027748
Watanabe, T. et al. A novel model of continuous depletion of glutathione in mice treated with L-buthionine (S,R)-sulfoximine. J. Toxicol. Sci. 28, 455–469 (2003).
pubmed: 14746349
doi: 10.2131/jts.28.455
Rom, O. et al. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci. Transl. Med. 12. https://doi.org/10.1126/scitranslmed.aaz2841 (2020).
Cramer, S. L. et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).
pubmed: 27869804
doi: 10.1038/nm.4232
Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl Acad. Sci. Usa. 107, 7461–7466 (2010).
pubmed: 20351271
pmcid: 2867754
doi: 10.1073/pnas.1002459107
Abu Aboud, O. et al. Glutamine addiction in kidney cancer suppresses oxidative stress and can be exploited for real-time imaging. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-0930 (2017).
Ju, H. Q. et al. Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene. https://doi.org/10.1038/onc.2017.227 (2017).
Ding, C. C. et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat. Metab. 2, 270–277 (2020).
pubmed: 32462112
pmcid: 7252213
doi: 10.1038/s42255-020-0181-1
DeRey-Pailhade, J. Sur la formation de l’hydrogen sulfure dans l’organisme a la suite de l’ingestion de quelques medicaments. Place de l’Ecole-de-Medicine (1885).
Hodson, L. & Gunn, P. J. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat. Rev. Endocrinol. 15, 689–700 (2019).
pubmed: 31554932
doi: 10.1038/s41574-019-0256-9
Saito, C., Zwingmann, C. & Jaeschke, H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 51, 246–254 (2010).
pubmed: 19821517
doi: 10.1002/hep.23267
Hazelton, G. A. & Lang, C. A. Glutathione contents of tissues in the aging mouse. Biochem J. 188, 25–30 (1980).
pubmed: 7406884
pmcid: 1162532
doi: 10.1042/bj1880025
Chen, Y. et al. Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 45, 1118–1128 (2007).
pubmed: 17464988
doi: 10.1002/hep.21635
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).
pubmed: 17251932
doi: 10.1038/nature05541
Lodhi, I. J. et al. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab. 21, 51–64 (2015).
pubmed: 25565205
pmcid: 4287274
doi: 10.1016/j.cmet.2014.12.002
Karsli-Uzunbas, G. et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4, 914–927 (2014).
pubmed: 24875857
pmcid: 4125614
doi: 10.1158/2159-8290.CD-14-0363
Lien, E. A., Solheim, E. & Ueland, P. M. Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res. 51, 4837–4844 (1991).
pubmed: 1893376
Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).
pubmed: 24439385
pmcid: 4076414
doi: 10.1016/j.cell.2013.12.010
Carlson, B. A. et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9, 22–31 (2016).
pubmed: 27262435
pmcid: 4900515
doi: 10.1016/j.redox.2016.05.003
Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).
pubmed: 25402683
doi: 10.1038/ncb3064
Sher, Y. & Hung, M. Blood AST, ALT and urea/BUN level analysis. Bio-Protoc. 3, e931 (2013).
doi: 10.21769/BioProtoc.931
Asantewaa, G. & Harris, I. S. Glutathione and its precursors in cancer. Curr. Opin. Biotechnol. 68, 292–299 (2021).
pubmed: 33819793
doi: 10.1016/j.copbio.2021.03.001
Combs, J. A. & DeNicola, G. M. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers 11. https://doi.org/10.3390/cancers11050678 (2019).
Zhao, L. N., Björklund, M., Caldez, M. J., Zheng, J. & Kaldis, P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 40, 2339–2354 (2021).
pubmed: 33664451
doi: 10.1038/s41388-021-01695-8
Bott, AlexJ. et al. Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab. 22, 1068–1077 (2015).
pubmed: 26603296
pmcid: 4670565
doi: 10.1016/j.cmet.2015.09.025
Itoh, K. et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322 (1997).
pubmed: 9240432
doi: 10.1006/bbrc.1997.6943
Eriksson, S., Prigge, J. R., Talago, E. A., Arnér, E. S. & Schmidt, E. E. Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat. Commun. 6, 6479 (2015).
pubmed: 25790857
doi: 10.1038/ncomms7479
Suvorova, E. S. et al. Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes. PLoS One 4, e6158 (2009).
pubmed: 19584930
pmcid: 2703566
doi: 10.1371/journal.pone.0006158
Slocum, S. L. et al. Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Arch. Biochem. Biophys. 591, 57–65 (2016).
pubmed: 26701603
doi: 10.1016/j.abb.2015.11.040
Wu, K. C., Cui, J. Y. & Klaassen, C. D. Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol. Sci. 123, 590–600 (2011).
pubmed: 21775727
pmcid: 3179677
doi: 10.1093/toxsci/kfr183
Enoch, H. G., Catala, A. & Strittmatter, P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251, 5095–5103 (1976).
pubmed: 8453
doi: 10.1016/S0021-9258(17)33223-4
Yan, Z., Yan, H. & Ou, H. Human thyroxine-binding globulin (TBG) promoter directs efficient and sustaining transgene expression in liver-specific pattern. Gene 506, 289–294 (2012).
pubmed: 22820390
doi: 10.1016/j.gene.2012.07.009
Kiourtis, C. et al. Specificity and off-target effects of AAV8-TBG viral vectors for the manipulation of hepatocellular gene expression in mice. Biol. Open 10. https://doi.org/10.1242/bio.058678 (2021).
Kang, Y. P. et al. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab. 33, 174–189.e177 (2021).
pubmed: 33357455
doi: 10.1016/j.cmet.2020.12.007
Watanabe, Y. et al. Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPbeta in 3T3L1 cells. FASEB J. 34, 5827–5837 (2020).
pubmed: 32141127
doi: 10.1096/fj.201902575R
Chen, Y. et al. Chronic glutathione depletion confers protection against alcohol-induced steatosis: implication for redox activation of AMP-activated protein kinase pathway. Sci. Rep. 6, 29743 (2016).
pubmed: 27403993
pmcid: 4940737
doi: 10.1038/srep29743
Haque, J. A. et al. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice. Lab. Investig. 90, 1704–1717 (2010).
pubmed: 20548286
doi: 10.1038/labinvest.2010.112
Brandsch, C. et al. Glutathione deficiency down-regulates hepatic lipogenesis in rats. Lipids Health Dis. 9, 50 (2010).
pubmed: 20482862
pmcid: 2881051
doi: 10.1186/1476-511X-9-50
Maiorino, M., Conrad, M. & Ursini, F. GPx4, lipid peroxidation and cell death: discoveries, rediscoveries and open issues. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2017.7115 (2017).
Kong, X. et al. Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am. J. Respir. Crit. Care Med. 184, 928–938 (2011).
pubmed: 21799073
pmcid: 3208662
doi: 10.1164/rccm.201102-0271OC
Reddy, N. M., Potteti, H. R., Mariani, T. J., Biswal, S. & Reddy, S. P. Conditional deletion of Nrf2 in airway epithelium exacerbates acute lung injury and impairs the resolution of inflammation. Am. J. Respir. Cell Mol. Biol. 45, 1161–1168 (2011).
pubmed: 21659655
pmcid: 3262666
doi: 10.1165/rcmb.2011-0144OC
Yamamoto, M., Kensler, T. W. & Motohashi, H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 (2018).
pubmed: 29717933
pmcid: 9762786
doi: 10.1152/physrev.00023.2017
Tian, W., Rojo de la Vega, M., Schmidlin, C. J., Ooi, A. & Zhang, D. D. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). J. Biol. Chem. 293, 2029–2040 (2018).
pubmed: 29255090
doi: 10.1074/jbc.RA117.000428
Akl, M. G. et al. Complementary gene regulation by NRF1 and NRF2 protects against hepatic cholesterol overload. Cell Rep. 42, 112399 (2023).
pubmed: 37060561
doi: 10.1016/j.celrep.2023.112399
Leung, L., Kwong, M., Hou, S., Lee, C. & Chan, J. Y. Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J. Biol. Chem. 278, 48021–48029 (2003).
pubmed: 12968018
doi: 10.1074/jbc.M308439200
Chen, L. et al. Nrf1 is critical for redox balance and survival of liver cells during development. Mol. Cell Biol. 23, 4673–4686 (2003).
pubmed: 12808106
pmcid: 164851
doi: 10.1128/MCB.23.13.4673-4686.2003
Kay, H. Y. et al. Nrf2 inhibits LXRalpha-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid. Redox Signal 15, 2135–2146 (2011).
pubmed: 21504366
pmcid: 6468953
doi: 10.1089/ars.2010.3834
Huang, J., Tabbi-Anneni, I., Gunda, V. & Wang, L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1211–G1221 (2010).
pubmed: 20930048
pmcid: 3006243
doi: 10.1152/ajpgi.00322.2010
Tanaka, Y. et al. NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J. Pharm. Exp. Ther. 325, 655–664 (2008).
doi: 10.1124/jpet.107.135822
Kitteringham, N. R. et al. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J. Proteom. 73, 1612–1631 (2010).
doi: 10.1016/j.jprot.2010.03.018
Yates, M. S. et al. Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol. Cancer Ther. 6, 154–162 (2007).
pubmed: 17237276
doi: 10.1158/1535-7163.MCT-06-0516
Al-Mubarak, B. R. et al. Non-canonical Keap1-independent activation of Nrf2 in astrocytes by mild oxidative stress. Redox Biol. 47, 102158 (2021).
pubmed: 34626892
pmcid: 8512624
doi: 10.1016/j.redox.2021.102158
Popineau, L. et al. Novel Grb14-mediated cross-talk between insulin and p62/Nrf2 pathways regulates liver lipogenesis and selective insulin resistance. Mol. Cell Biol. 36, 2168–2181 (2016).
pubmed: 27215388
pmcid: 4968215
doi: 10.1128/MCB.00170-16
Lu, S. C. Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153 (2013).
pubmed: 22995213
doi: 10.1016/j.bbagen.2012.09.008
Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R. & Turner, N. D. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004).
pubmed: 14988435
doi: 10.1093/jn/134.3.489
Mohar, I. et al. Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6. Redox Biol. 2, 377–387 (2014).
pubmed: 24563856
pmcid: 3926121
doi: 10.1016/j.redox.2014.01.008
Varani, J. et al. Liver protein expression in NASH mice on a high-fat diet: response to multi-mineral intervention. Front. Nutr. 9, 859292 (2022).
pubmed: 35634402
pmcid: 9130755
doi: 10.3389/fnut.2022.859292
Tirmenstein, M. A. & Nelson, S. D. Hepatotoxicity after 3’-hydroxyacetanilide administration to buthionine sulfoximine pretreated mice. Chem. Res. Toxicol. 4, 214–217 (1991).
pubmed: 1782350
doi: 10.1021/tx00020a014
McConnachie, L. A. et al. Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol. Sci. 99, 628–636 (2007).
pubmed: 17584759
doi: 10.1093/toxsci/kfm165
Luengo, A. et al. Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nat. Commun. 10, 5604 (2019).
pubmed: 31811141
pmcid: 6898239
doi: 10.1038/s41467-019-13419-4
Jobbagy, S. et al. Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox Biol. 21, 101050 (2019).
pubmed: 30654300
doi: 10.1016/j.redox.2018.11.008
Kendig, E. L. et al. Lipid metabolism and body composition in Gclm(-/-) mice. Toxicol. Appl. Pharmacol. 257, 338–348 (2011).
pubmed: 21967773
pmcid: 3226854
doi: 10.1016/j.taap.2011.09.017
Elshorbagy, A. K. et al. Exploring the lean phenotype of glutathione-depleted mice: thiol, amino acid and fatty acid profiles. PLoS One 11, e0163214 (2016).
pubmed: 27788147
pmcid: 5082875
doi: 10.1371/journal.pone.0163214
Chakravarthy, M. V. et al. New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 1, 309–322 (2005).
pubmed: 16054078
doi: 10.1016/j.cmet.2005.04.002
Lee, D. F. et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol. Cell 36, 131–140 (2009).
pubmed: 19818716
pmcid: 2770835
doi: 10.1016/j.molcel.2009.07.025
Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).
pubmed: 30610225
doi: 10.1038/s41573-018-0008-x
Chen, Y. et al. Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chem. Biol. Interact. 303, 1–6 (2019).
pubmed: 30794799
pmcid: 6743730
doi: 10.1016/j.cbi.2019.02.015
Mo, C. et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal 20, 574–588 (2014).
pubmed: 23875776
pmcid: 3901384
doi: 10.1089/ars.2012.5116
Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).
pubmed: 32649885
pmcid: 7439808
doi: 10.1016/j.ccell.2020.06.001
Nelson, M. E. et al. Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat. Commun. 8, 14689 (2017).
pubmed: 28290443
pmcid: 5424065
doi: 10.1038/ncomms14689
KIRSCH, R. et al. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J. Gastroenterol. Hepatol. 18, 1272–1282 (2003).
pubmed: 14535984
doi: 10.1046/j.1440-1746.2003.03198.x
Resseguie, M. E. et al. Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction. J. Biol. Chem. 286, 1649–1658 (2011).
pubmed: 21059658
doi: 10.1074/jbc.M110.106922
Resseguie, M. et al. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J. 21, 2622–2632 (2007).
pubmed: 17456783
doi: 10.1096/fj.07-8227com
Michel, V., Yuan, Z., Ramsubir, S. & Bakovic, M. Choline Transport for Phospholipid Synthesis. Exp. Biol. Med. 231, 490–504 (2006).
doi: 10.1177/153537020623100503
Galipeau, D., Verma, S. & McNeill, J. H. Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am. J. Physiol.-Heart Circ. Physiol. 283, H2478–H2484 (2002).
pubmed: 12427595
doi: 10.1152/ajpheart.00243.2002
Frazee, A. C. et al. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 33, 243–246 (2015).
pubmed: 25748911
pmcid: 4792117
doi: 10.1038/nbt.3172
Korotkevich, G. et al. Fast gene set enrichment analysis. bioRxiv, 060012. https://doi.org/10.1101/060012 (2021).
Ortmayr, K., Schwaiger, M., Hann, S. & Koellensperger, G. An integrated metabolomics workflow for the quantification of sulfur pathway intermediates employing thiol protection with N-ethyl maleimide and hydrophilic interaction liquid chromatography tandem mass spectrometry. Analyst 140, 7687–7695 (2015).
pubmed: 26451393
doi: 10.1039/C5AN01629K
Zhu, P., Oe, T. & Blair, I. A. Determination of cellular redox status by stable isotope dilution liquid chromatography/mass spectrometry analysis of glutathione and glutathione disulfide. Rapid Commun. Mass Spectrom. 22, 432–440 (2008).
pubmed: 18215009
doi: 10.1002/rcm.3380
Kang, Y. P. et al. PHGDH supports liver ceramide synthesis and sustains lipid homeostasis. Cancer Metab. 8, 1–13 (2020).
doi: 10.1186/s40170-020-00212-x
Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).
pubmed: 25938372
pmcid: 4449330
doi: 10.1038/nmeth.3393
Kang, Y. P. et al. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. Elife 8, e45572 (2019).
pubmed: 31107239
pmcid: 6584702
doi: 10.7554/eLife.45572
Bennett, B. D., Yuan, J., Kimball, E. H. & Rabinowitz, J. D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3, 1299 (2008).
pubmed: 18714298
pmcid: 2710577
doi: 10.1038/nprot.2008.107
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–d552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038
Sud, M. et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).
pubmed: 26467476
doi: 10.1093/nar/gkv1042