Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
21 Jul 2024
Historique:
received: 19 01 2023
accepted: 12 07 2024
medline: 22 7 2024
pubmed: 22 7 2024
entrez: 21 7 2024
Statut: epublish

Résumé

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.

Identifiants

pubmed: 39034312
doi: 10.1038/s41467-024-50454-2
pii: 10.1038/s41467-024-50454-2
doi:

Substances chimiques

Glutathione GAN16C9B8O
NF-E2-Related Factor 2 0
Glutamate-Cysteine Ligase EC 6.3.2.2
Nfe2l2 protein, mouse 0
Triglycerides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6152

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R01CA269813, R37CA230042,
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : R01AI150698

Informations de copyright

© 2024. The Author(s).

Références

Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).
pubmed: 35190722 doi: 10.1038/s41580-022-00456-z
Sun, Y. et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 37, 101696 (2020).
pubmed: 32950427 pmcid: 7767745 doi: 10.1016/j.redox.2020.101696
Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).
pubmed: 32231263 doi: 10.1038/s41580-020-0230-3
Lennicke, C. & Cocheme, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).
pubmed: 34547234 doi: 10.1016/j.molcel.2021.08.018
Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).
pubmed: 34194012 pmcid: 8243062 doi: 10.1038/s41573-021-00233-1
Winterbourn, C. C. & Hampton, M. B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549–561 (2008).
pubmed: 18544350 doi: 10.1016/j.freeradbiomed.2008.05.004
Park, J. O. et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat. Chem. Biol. https://doi.org/10.1038/nchembio.2077 (2016).
Telorack, M. et al. A glutathione-Nrf2-thioredoxin cross-talk ensures keratinocyte survival and efficient wound repair. PLoS Genet 12, e1005800 (2016).
pubmed: 26808544 pmcid: 4726503 doi: 10.1371/journal.pgen.1005800
Mak, T. W. et al. Glutathione primes T cell metabolism for inflammation. Immunity 46, 1089–1090 (2017).
pubmed: 28636957 doi: 10.1016/j.immuni.2017.06.009
Lian, G. et al. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. Elife 7. https://doi.org/10.7554/eLife.36158 (2018).
Kurniawan, H. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 31, 920–936 e927 (2020).
pubmed: 32213345 pmcid: 7265172 doi: 10.1016/j.cmet.2020.03.004
Franchina, D. G. et al. Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nat. Commun. 13, 1789 (2022).
pubmed: 35379825 pmcid: 8980022 doi: 10.1038/s41467-022-29426-x
Okuno, Y. et al. Oxidative stress inhibits healthy adipose expansion through suppression of SREBF1-mediated lipogenic pathway. Diabetes 67, 1113–1127 (2018).
pubmed: 29618580 doi: 10.2337/db17-1032
Shi, Z. Z. et al. Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc. Natl Acad. Sci. Usa. 97, 5101–5106 (2000).
pubmed: 10805773 pmcid: 25788 doi: 10.1073/pnas.97.10.5101
Dalton, T. P., Dieter, M. Z., Yang, Y., Shertzer, H. G. & Nebert, D. W. Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem. Biophys. Res. Commun. 279, 324–329 (2000).
pubmed: 11118286 doi: 10.1006/bbrc.2000.3930
Winkler, A. et al. Glutathione is essential for early embryogenesis–analysis of a glutathione synthetase knockout mouse. Biochem Biophys. Res Commun. 412, 121–126 (2011).
pubmed: 21802407 doi: 10.1016/j.bbrc.2011.07.056
Yang, Y. et al. Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J. Biol. Chem. 277, 49446–49452 (2002).
pubmed: 12384496 doi: 10.1074/jbc.M209372200
Giordano, G. et al. Neurotoxicity of domoic Acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Mol. Pharm. 70, 2116–2126 (2006).
doi: 10.1124/mol.106.027748
Watanabe, T. et al. A novel model of continuous depletion of glutathione in mice treated with L-buthionine (S,R)-sulfoximine. J. Toxicol. Sci. 28, 455–469 (2003).
pubmed: 14746349 doi: 10.2131/jts.28.455
Rom, O. et al. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci. Transl. Med. 12. https://doi.org/10.1126/scitranslmed.aaz2841 (2020).
Cramer, S. L. et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).
pubmed: 27869804 doi: 10.1038/nm.4232
Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl Acad. Sci. Usa. 107, 7461–7466 (2010).
pubmed: 20351271 pmcid: 2867754 doi: 10.1073/pnas.1002459107
Abu Aboud, O. et al. Glutamine addiction in kidney cancer suppresses oxidative stress and can be exploited for real-time imaging. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-0930 (2017).
Ju, H. Q. et al. Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene. https://doi.org/10.1038/onc.2017.227 (2017).
Ding, C. C. et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat. Metab. 2, 270–277 (2020).
pubmed: 32462112 pmcid: 7252213 doi: 10.1038/s42255-020-0181-1
DeRey-Pailhade, J. Sur la formation de l’hydrogen sulfure dans l’organisme a la suite de l’ingestion de quelques medicaments. Place de l’Ecole-de-Medicine (1885).
Hodson, L. & Gunn, P. J. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat. Rev. Endocrinol. 15, 689–700 (2019).
pubmed: 31554932 doi: 10.1038/s41574-019-0256-9
Saito, C., Zwingmann, C. & Jaeschke, H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 51, 246–254 (2010).
pubmed: 19821517 doi: 10.1002/hep.23267
Hazelton, G. A. & Lang, C. A. Glutathione contents of tissues in the aging mouse. Biochem J. 188, 25–30 (1980).
pubmed: 7406884 pmcid: 1162532 doi: 10.1042/bj1880025
Chen, Y. et al. Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 45, 1118–1128 (2007).
pubmed: 17464988 doi: 10.1002/hep.21635
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).
pubmed: 17251932 doi: 10.1038/nature05541
Lodhi, I. J. et al. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab. 21, 51–64 (2015).
pubmed: 25565205 pmcid: 4287274 doi: 10.1016/j.cmet.2014.12.002
Karsli-Uzunbas, G. et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4, 914–927 (2014).
pubmed: 24875857 pmcid: 4125614 doi: 10.1158/2159-8290.CD-14-0363
Lien, E. A., Solheim, E. & Ueland, P. M. Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res. 51, 4837–4844 (1991).
pubmed: 1893376
Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).
pubmed: 24439385 pmcid: 4076414 doi: 10.1016/j.cell.2013.12.010
Carlson, B. A. et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9, 22–31 (2016).
pubmed: 27262435 pmcid: 4900515 doi: 10.1016/j.redox.2016.05.003
Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).
pubmed: 25402683 doi: 10.1038/ncb3064
Sher, Y. & Hung, M. Blood AST, ALT and urea/BUN level analysis. Bio-Protoc. 3, e931 (2013).
doi: 10.21769/BioProtoc.931
Asantewaa, G. & Harris, I. S. Glutathione and its precursors in cancer. Curr. Opin. Biotechnol. 68, 292–299 (2021).
pubmed: 33819793 doi: 10.1016/j.copbio.2021.03.001
Combs, J. A. & DeNicola, G. M. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers 11. https://doi.org/10.3390/cancers11050678 (2019).
Zhao, L. N., Björklund, M., Caldez, M. J., Zheng, J. & Kaldis, P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 40, 2339–2354 (2021).
pubmed: 33664451 doi: 10.1038/s41388-021-01695-8
Bott, AlexJ. et al. Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab. 22, 1068–1077 (2015).
pubmed: 26603296 pmcid: 4670565 doi: 10.1016/j.cmet.2015.09.025
Itoh, K. et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322 (1997).
pubmed: 9240432 doi: 10.1006/bbrc.1997.6943
Eriksson, S., Prigge, J. R., Talago, E. A., Arnér, E. S. & Schmidt, E. E. Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat. Commun. 6, 6479 (2015).
pubmed: 25790857 doi: 10.1038/ncomms7479
Suvorova, E. S. et al. Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes. PLoS One 4, e6158 (2009).
pubmed: 19584930 pmcid: 2703566 doi: 10.1371/journal.pone.0006158
Slocum, S. L. et al. Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Arch. Biochem. Biophys. 591, 57–65 (2016).
pubmed: 26701603 doi: 10.1016/j.abb.2015.11.040
Wu, K. C., Cui, J. Y. & Klaassen, C. D. Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol. Sci. 123, 590–600 (2011).
pubmed: 21775727 pmcid: 3179677 doi: 10.1093/toxsci/kfr183
Enoch, H. G., Catala, A. & Strittmatter, P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251, 5095–5103 (1976).
pubmed: 8453 doi: 10.1016/S0021-9258(17)33223-4
Yan, Z., Yan, H. & Ou, H. Human thyroxine-binding globulin (TBG) promoter directs efficient and sustaining transgene expression in liver-specific pattern. Gene 506, 289–294 (2012).
pubmed: 22820390 doi: 10.1016/j.gene.2012.07.009
Kiourtis, C. et al. Specificity and off-target effects of AAV8-TBG viral vectors for the manipulation of hepatocellular gene expression in mice. Biol. Open 10. https://doi.org/10.1242/bio.058678 (2021).
Kang, Y. P. et al. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab. 33, 174–189.e177 (2021).
pubmed: 33357455 doi: 10.1016/j.cmet.2020.12.007
Watanabe, Y. et al. Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPbeta in 3T3L1 cells. FASEB J. 34, 5827–5837 (2020).
pubmed: 32141127 doi: 10.1096/fj.201902575R
Chen, Y. et al. Chronic glutathione depletion confers protection against alcohol-induced steatosis: implication for redox activation of AMP-activated protein kinase pathway. Sci. Rep. 6, 29743 (2016).
pubmed: 27403993 pmcid: 4940737 doi: 10.1038/srep29743
Haque, J. A. et al. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice. Lab. Investig. 90, 1704–1717 (2010).
pubmed: 20548286 doi: 10.1038/labinvest.2010.112
Brandsch, C. et al. Glutathione deficiency down-regulates hepatic lipogenesis in rats. Lipids Health Dis. 9, 50 (2010).
pubmed: 20482862 pmcid: 2881051 doi: 10.1186/1476-511X-9-50
Maiorino, M., Conrad, M. & Ursini, F. GPx4, lipid peroxidation and cell death: discoveries, rediscoveries and open issues. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2017.7115 (2017).
Kong, X. et al. Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am. J. Respir. Crit. Care Med. 184, 928–938 (2011).
pubmed: 21799073 pmcid: 3208662 doi: 10.1164/rccm.201102-0271OC
Reddy, N. M., Potteti, H. R., Mariani, T. J., Biswal, S. & Reddy, S. P. Conditional deletion of Nrf2 in airway epithelium exacerbates acute lung injury and impairs the resolution of inflammation. Am. J. Respir. Cell Mol. Biol. 45, 1161–1168 (2011).
pubmed: 21659655 pmcid: 3262666 doi: 10.1165/rcmb.2011-0144OC
Yamamoto, M., Kensler, T. W. & Motohashi, H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 (2018).
pubmed: 29717933 pmcid: 9762786 doi: 10.1152/physrev.00023.2017
Tian, W., Rojo de la Vega, M., Schmidlin, C. J., Ooi, A. & Zhang, D. D. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). J. Biol. Chem. 293, 2029–2040 (2018).
pubmed: 29255090 doi: 10.1074/jbc.RA117.000428
Akl, M. G. et al. Complementary gene regulation by NRF1 and NRF2 protects against hepatic cholesterol overload. Cell Rep. 42, 112399 (2023).
pubmed: 37060561 doi: 10.1016/j.celrep.2023.112399
Leung, L., Kwong, M., Hou, S., Lee, C. & Chan, J. Y. Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J. Biol. Chem. 278, 48021–48029 (2003).
pubmed: 12968018 doi: 10.1074/jbc.M308439200
Chen, L. et al. Nrf1 is critical for redox balance and survival of liver cells during development. Mol. Cell Biol. 23, 4673–4686 (2003).
pubmed: 12808106 pmcid: 164851 doi: 10.1128/MCB.23.13.4673-4686.2003
Kay, H. Y. et al. Nrf2 inhibits LXRalpha-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid. Redox Signal 15, 2135–2146 (2011).
pubmed: 21504366 pmcid: 6468953 doi: 10.1089/ars.2010.3834
Huang, J., Tabbi-Anneni, I., Gunda, V. & Wang, L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1211–G1221 (2010).
pubmed: 20930048 pmcid: 3006243 doi: 10.1152/ajpgi.00322.2010
Tanaka, Y. et al. NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J. Pharm. Exp. Ther. 325, 655–664 (2008).
doi: 10.1124/jpet.107.135822
Kitteringham, N. R. et al. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J. Proteom. 73, 1612–1631 (2010).
doi: 10.1016/j.jprot.2010.03.018
Yates, M. S. et al. Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol. Cancer Ther. 6, 154–162 (2007).
pubmed: 17237276 doi: 10.1158/1535-7163.MCT-06-0516
Al-Mubarak, B. R. et al. Non-canonical Keap1-independent activation of Nrf2 in astrocytes by mild oxidative stress. Redox Biol. 47, 102158 (2021).
pubmed: 34626892 pmcid: 8512624 doi: 10.1016/j.redox.2021.102158
Popineau, L. et al. Novel Grb14-mediated cross-talk between insulin and p62/Nrf2 pathways regulates liver lipogenesis and selective insulin resistance. Mol. Cell Biol. 36, 2168–2181 (2016).
pubmed: 27215388 pmcid: 4968215 doi: 10.1128/MCB.00170-16
Lu, S. C. Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153 (2013).
pubmed: 22995213 doi: 10.1016/j.bbagen.2012.09.008
Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R. & Turner, N. D. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004).
pubmed: 14988435 doi: 10.1093/jn/134.3.489
Mohar, I. et al. Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6. Redox Biol. 2, 377–387 (2014).
pubmed: 24563856 pmcid: 3926121 doi: 10.1016/j.redox.2014.01.008
Varani, J. et al. Liver protein expression in NASH mice on a high-fat diet: response to multi-mineral intervention. Front. Nutr. 9, 859292 (2022).
pubmed: 35634402 pmcid: 9130755 doi: 10.3389/fnut.2022.859292
Tirmenstein, M. A. & Nelson, S. D. Hepatotoxicity after 3’-hydroxyacetanilide administration to buthionine sulfoximine pretreated mice. Chem. Res. Toxicol. 4, 214–217 (1991).
pubmed: 1782350 doi: 10.1021/tx00020a014
McConnachie, L. A. et al. Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol. Sci. 99, 628–636 (2007).
pubmed: 17584759 doi: 10.1093/toxsci/kfm165
Luengo, A. et al. Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nat. Commun. 10, 5604 (2019).
pubmed: 31811141 pmcid: 6898239 doi: 10.1038/s41467-019-13419-4
Jobbagy, S. et al. Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox Biol. 21, 101050 (2019).
pubmed: 30654300 doi: 10.1016/j.redox.2018.11.008
Kendig, E. L. et al. Lipid metabolism and body composition in Gclm(-/-) mice. Toxicol. Appl. Pharmacol. 257, 338–348 (2011).
pubmed: 21967773 pmcid: 3226854 doi: 10.1016/j.taap.2011.09.017
Elshorbagy, A. K. et al. Exploring the lean phenotype of glutathione-depleted mice: thiol, amino acid and fatty acid profiles. PLoS One 11, e0163214 (2016).
pubmed: 27788147 pmcid: 5082875 doi: 10.1371/journal.pone.0163214
Chakravarthy, M. V. et al. New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 1, 309–322 (2005).
pubmed: 16054078 doi: 10.1016/j.cmet.2005.04.002
Lee, D. F. et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol. Cell 36, 131–140 (2009).
pubmed: 19818716 pmcid: 2770835 doi: 10.1016/j.molcel.2009.07.025
Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).
pubmed: 30610225 doi: 10.1038/s41573-018-0008-x
Chen, Y. et al. Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chem. Biol. Interact. 303, 1–6 (2019).
pubmed: 30794799 pmcid: 6743730 doi: 10.1016/j.cbi.2019.02.015
Mo, C. et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal 20, 574–588 (2014).
pubmed: 23875776 pmcid: 3901384 doi: 10.1089/ars.2012.5116
Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).
pubmed: 32649885 pmcid: 7439808 doi: 10.1016/j.ccell.2020.06.001
Nelson, M. E. et al. Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat. Commun. 8, 14689 (2017).
pubmed: 28290443 pmcid: 5424065 doi: 10.1038/ncomms14689
KIRSCH, R. et al. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J. Gastroenterol. Hepatol. 18, 1272–1282 (2003).
pubmed: 14535984 doi: 10.1046/j.1440-1746.2003.03198.x
Resseguie, M. E. et al. Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction. J. Biol. Chem. 286, 1649–1658 (2011).
pubmed: 21059658 doi: 10.1074/jbc.M110.106922
Resseguie, M. et al. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J. 21, 2622–2632 (2007).
pubmed: 17456783 doi: 10.1096/fj.07-8227com
Michel, V., Yuan, Z., Ramsubir, S. & Bakovic, M. Choline Transport for Phospholipid Synthesis. Exp. Biol. Med. 231, 490–504 (2006).
doi: 10.1177/153537020623100503
Galipeau, D., Verma, S. & McNeill, J. H. Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am. J. Physiol.-Heart Circ. Physiol. 283, H2478–H2484 (2002).
pubmed: 12427595 doi: 10.1152/ajpheart.00243.2002
Frazee, A. C. et al. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 33, 243–246 (2015).
pubmed: 25748911 pmcid: 4792117 doi: 10.1038/nbt.3172
Korotkevich, G. et al. Fast gene set enrichment analysis. bioRxiv, 060012. https://doi.org/10.1101/060012 (2021).
Ortmayr, K., Schwaiger, M., Hann, S. & Koellensperger, G. An integrated metabolomics workflow for the quantification of sulfur pathway intermediates employing thiol protection with N-ethyl maleimide and hydrophilic interaction liquid chromatography tandem mass spectrometry. Analyst 140, 7687–7695 (2015).
pubmed: 26451393 doi: 10.1039/C5AN01629K
Zhu, P., Oe, T. & Blair, I. A. Determination of cellular redox status by stable isotope dilution liquid chromatography/mass spectrometry analysis of glutathione and glutathione disulfide. Rapid Commun. Mass Spectrom. 22, 432–440 (2008).
pubmed: 18215009 doi: 10.1002/rcm.3380
Kang, Y. P. et al. PHGDH supports liver ceramide synthesis and sustains lipid homeostasis. Cancer Metab. 8, 1–13 (2020).
doi: 10.1186/s40170-020-00212-x
Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).
pubmed: 25938372 pmcid: 4449330 doi: 10.1038/nmeth.3393
Kang, Y. P. et al. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. Elife 8, e45572 (2019).
pubmed: 31107239 pmcid: 6584702 doi: 10.7554/eLife.45572
Bennett, B. D., Yuan, J., Kimball, E. H. & Rabinowitz, J. D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3, 1299 (2008).
pubmed: 18714298 pmcid: 2710577 doi: 10.1038/nprot.2008.107
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–d552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038
Sud, M. et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).
pubmed: 26467476 doi: 10.1093/nar/gkv1042

Auteurs

Gloria Asantewaa (G)

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA.
Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Emily T Tuttle (ET)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Nathan P Ward (NP)

Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.

Yun Pyo Kang (YP)

Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.

Yumi Kim (Y)

Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.

Madeline E Kavanagh (ME)

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.

Nomeda Girnius (N)

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Ying Chen (Y)

Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.

Katherine Rodriguez (K)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Fabio Hecht (F)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Marco Zocchi (M)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Leonid Smorodintsev-Schiller (L)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

TashJaé Q Scales (TQ)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Kira Taylor (K)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Fatemeh Alimohammadi (F)

Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.

Renae P Duncan (RP)

Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.

Zachary R Sechrist (ZR)

Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.

Diana Agostini-Vulaj (D)

Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.

Xenia L Schafer (XL)

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA.

Hayley Chang (H)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Zachary R Smith (ZR)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Thomas N O'Connor (TN)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.

Sarah Whelan (S)

Leicester Cancer Research Centre, University of Leicester, Leicester, UK.

Laura M Selfors (LM)

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Jett Crowdis (J)

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

G Kenneth Gray (GK)

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Roderick T Bronson (RT)

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Dirk Brenner (D)

Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.

Alessandro Rufini (A)

Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.

Robert T Dirksen (RT)

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.

Aram F Hezel (AF)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Aaron R Huber (AR)

Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.

Joshua Munger (J)

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

Benjamin F Cravatt (BF)

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.

Vasilis Vasiliou (V)

Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.

Calvin L Cole (CL)

Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.

Gina M DeNicola (GM)

Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.

Isaac S Harris (IS)

Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA. isaac_harris@urmc.rochester.edu.
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA. isaac_harris@urmc.rochester.edu.
Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA. isaac_harris@urmc.rochester.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH