Deformation-based morphometry: a sensitive imaging approach to detect radiation-induced brain injury?


Journal

Cancer imaging : the official publication of the International Cancer Imaging Society
ISSN: 1470-7330
Titre abrégé: Cancer Imaging
Pays: England
ID NLM: 101172931

Informations de publication

Date de publication:
18 Jul 2024
Historique:
received: 26 02 2024
accepted: 27 06 2024
medline: 19 7 2024
pubmed: 19 7 2024
entrez: 18 7 2024
Statut: epublish

Résumé

Radiotherapy is a major therapeutic approach in patients with brain tumors. However, it leads to cognitive impairments. To improve the management of radiation-induced brain sequalae, deformation-based morphometry (DBM) could be relevant. Here, we analyzed the significance of DBM using Jacobian determinants (JD) obtained by non-linear registration of MRI images to detect local vulnerability of healthy cerebral tissue in an animal model of brain irradiation. Rats were exposed to fractionated whole-brain irradiation (WBI, 30 Gy). A multiparametric MRI (anatomical, diffusion and vascular) study was conducted longitudinally from 1 month up to 6 months after WBI. From the registration of MRI images, macroscopic changes were analyzed by DBM and microscopic changes at the cellular and vascular levels were evaluated by quantification of cerebral blood volume (CBV) and diffusion metrics including mean diffusivity (MD). Voxel-wise comparisons were performed on the entire brain and in specific brain areas identified by DBM. Immunohistology analyses were undertaken to visualize the vessels and astrocytes. DBM analysis evidenced time-course of local macrostructural changes; some of which were transient and some were long lasting after WBI. DBM revealed two vulnerable brain areas, namely the corpus callosum and the cortex. DBM changes were spatially associated to microstructural alterations as revealed by both diffusion metrics and CBV changes, and confirmed by immunohistology analyses. Finally, matrix correlations demonstrated correlations between JD/MD in the early phase after WBI and JD/CBV in the late phase both in the corpus callosum and the cortex. Brain irradiation induces local macrostructural changes detected by DBM which could be relevant to identify brain structures prone to radiation-induced tissue changes. The translation of these data in patients could represent an added value in imaging studies on brain radiotoxicity.

Sections du résumé

BACKGROUND BACKGROUND
Radiotherapy is a major therapeutic approach in patients with brain tumors. However, it leads to cognitive impairments. To improve the management of radiation-induced brain sequalae, deformation-based morphometry (DBM) could be relevant. Here, we analyzed the significance of DBM using Jacobian determinants (JD) obtained by non-linear registration of MRI images to detect local vulnerability of healthy cerebral tissue in an animal model of brain irradiation.
METHODS METHODS
Rats were exposed to fractionated whole-brain irradiation (WBI, 30 Gy). A multiparametric MRI (anatomical, diffusion and vascular) study was conducted longitudinally from 1 month up to 6 months after WBI. From the registration of MRI images, macroscopic changes were analyzed by DBM and microscopic changes at the cellular and vascular levels were evaluated by quantification of cerebral blood volume (CBV) and diffusion metrics including mean diffusivity (MD). Voxel-wise comparisons were performed on the entire brain and in specific brain areas identified by DBM. Immunohistology analyses were undertaken to visualize the vessels and astrocytes.
RESULTS RESULTS
DBM analysis evidenced time-course of local macrostructural changes; some of which were transient and some were long lasting after WBI. DBM revealed two vulnerable brain areas, namely the corpus callosum and the cortex. DBM changes were spatially associated to microstructural alterations as revealed by both diffusion metrics and CBV changes, and confirmed by immunohistology analyses. Finally, matrix correlations demonstrated correlations between JD/MD in the early phase after WBI and JD/CBV in the late phase both in the corpus callosum and the cortex.
CONCLUSIONS CONCLUSIONS
Brain irradiation induces local macrostructural changes detected by DBM which could be relevant to identify brain structures prone to radiation-induced tissue changes. The translation of these data in patients could represent an added value in imaging studies on brain radiotoxicity.

Identifiants

pubmed: 39026377
doi: 10.1186/s40644-024-00736-1
pii: 10.1186/s40644-024-00736-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

95

Subventions

Organisme : Région Normandie
ID : RIN 3R (2018-2021)
Organisme : Région Normandie
ID : RIN TORAL (2018-2021)
Organisme : Agence Nationale de la Recherche
ID : Investissement d'Avenir (n°ANR-10-EQPX1401)
Organisme : Cancéropôle Nord-Ouest
ID : Projet Emergence 2017
Organisme : Institut National Du Cancer
ID : INCA_16071 (Brain-Matrix project)

Informations de copyright

© 2024. The Author(s).

Références

Makale MT, McDonald CR, Hattangadi-Gluth J, Kesari S. Brain irradiation and long-term cognitive disability: current concepts. Nat Rev Neurol. 2017;13(1):52–64.
pubmed: 27982041 doi: 10.1038/nrneurol.2016.185
Yao S, Zuo H, Li W, Cai Y, Zhang Q, Pang L, et al. The correlations between psychological distress, cognitive impairment and quality of life in patients with brain metastases after whole-brain radiotherapy. Clin Transl Oncol. 2023;25(1):207–17.
pubmed: 36038750 doi: 10.1007/s12094-022-02927-3
Di Perri D, Jmil S, Lawson TM, Van Calster L, Whenham N, Renard L. Health-related quality of life and cognitive failures in patients with lower-grade gliomas treated with radiotherapy. Cancer/Radiothérapie. 2023;27(3):219–24.
pubmed: 37080857 doi: 10.1016/j.canrad.2022.10.004
Pazzaglia S, Briganti G, Mancuso M, Saran A. Neurocognitive decline following Radiotherapy: mechanisms and therapeutic implications. Cancers. 2020;12(1):146.
pubmed: 31936195 pmcid: 7017115 doi: 10.3390/cancers12010146
Yang L, Yang J, Li G, Li Y, Wu R, Cheng J, et al. Pathophysiological responses in rat and mouse models of Radiation-Induced Brain Injury. Mol Neurobiol. 2017;54(2):1022–32.
pubmed: 26797684 doi: 10.1007/s12035-015-9628-x
Petr J, Hogeboom L, Nikulin P, Wiegers E, Schroyen G, Kallehauge J, et al. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. Magn Reson Mater Phys Biol Med. 2022;35(1):163–86.
doi: 10.1007/s10334-021-00985-2
Sultana N, Sun C, Katsube T, Wang B. Biomarkers of brain damage Induced by Radiotherapy. Dose-Response. 2020;18(3):1559325820938279.
pubmed: 32694960 pmcid: 7350401 doi: 10.1177/1559325820938279
Hart E, Odé Z, Derieppe MPP, Groenink L, Heymans MW, Otten R, et al. Blood-brain barrier permeability following conventional photon radiotherapy – A systematic review and meta-analysis of clinical and preclinical studies. Clin Transl Radiat Oncol. 2022;35:44–55.
pubmed: 35601799 pmcid: 9117815
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol. 2023;99(2):119–37.
pubmed: 35511499 doi: 10.1080/09553002.2022.2074167
Mietchen D, Gaser C. Computational morphometry for detecting changes in brain structure due to development, aging, learning, disease and evolution. Front Neuroinformatics [Internet]. 2009 [cited 2023 Nov 21];3. https://www.frontiersin.org/articles/ https://doi.org/10.3389/neuro.11.025.2009 .
Ashburner J, Csernansk JG, Davatzikos C, Fox NC, Frisoni GB, Thompson PM. Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol. 2003;2(2):79–88.
pubmed: 12849264 doi: 10.1016/S1474-4422(03)00304-1
Manera AL, Dadar M, Collins DL, Ducharme S. Deformation based morphometry study of longitudinal MRI changes in behavioral variant frontotemporal dementia. NeuroImage Clin. 2019;24:102079.
pubmed: 31795051 pmcid: 6879994 doi: 10.1016/j.nicl.2019.102079
Gaser C, Schmidt S, Metzler M, Herrmann KH, Krumbein I, Reichenbach JR, et al. Deformation-based brain morphometry in rats. NeuroImage. 2012;63(1):47–53.
pubmed: 22776449 doi: 10.1016/j.neuroimage.2012.06.066
Zhao Q, Pohl KM, Sullivan EV, Pfefferbaum A, Zahr NM. Jacobian mapping reveals converging brain substrates of disruption and repair in response to ethanol exposure and abstinence in 2 strains of rats. Alcohol Clin Exp Res. 2021;45(1):92–104.
pubmed: 33119896 doi: 10.1111/acer.14496
Gull S, Gaser C, Herrmann KH, Urbach A, Boehme M, Afzal S, et al. Brain macro-structural alterations in aging rats: a Longitudinal Lifetime Approach. Cells. 2023;12(3):432.
pubmed: 36766774 pmcid: 9914014 doi: 10.3390/cells12030432
Misquitta K, Dadar M, Louis Collins D, Tartaglia MC. White matter hyperintensities and neuropsychiatric symptoms in mild cognitive impairment and Alzheimer’s disease. NeuroImage Clin. 2020;28:102367.
pubmed: 32798911 pmcid: 7453140 doi: 10.1016/j.nicl.2020.102367
Zhou C, Gao T, Guo T, Wu J, Guan X, Zhou W, et al. Structural Covariance Network Disruption and Functional Compensation in Parkinson’s Disease. Front Aging Neurosci. 2020;12:199.
pubmed: 32714179 pmcid: 7351504 doi: 10.3389/fnagi.2020.00199
Nagtegaal SHJ, David S, van Grinsven EE, van Zandvoort MJE, Seravalli E, Snijders TJ, et al. Morphological changes after cranial fractionated photon radiotherapy: localized loss of white matter and grey matter volume with increasing dose. Clin Transl Radiat Oncol. 2021;31:14–20.
pubmed: 34504960 pmcid: 8416633
de Guzman AE, Ahmed M, Perrier S, Hammill C, Li YQ, Wong CS, et al. Protection from Radiation-Induced Neuroanatomic deficits by CCL2 Deficiency is dependent on sex. Int J Radiat Oncol. 2022;113(2):390–400.
doi: 10.1016/j.ijrobp.2022.01.035
Bécam J, Ropars G, Dwiri FA, Brunaud C, Toutain J, Chazalviel L et al. Physical activity attenuates brain irradiation-associated skeletal muscle damage in the rat. Int J Radiat Oncol Biol Phys [Internet]. 2023 Oct 19 [cited 2023 Nov 15];0(0). https://www.redjournal.org/article/S0360-3016(23)08015-X/fulltext .
van Hoof SJ, Granton PV, Verhaegen F. Development and validation of a treatment planning system for small animal radiotherapy: SmART-Plan. Radiother Oncol. 2013;109(3):361–6.
pubmed: 24183860 doi: 10.1016/j.radonc.2013.10.003
Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54(3):2033–44.
pubmed: 20851191 doi: 10.1016/j.neuroimage.2010.09.025
Shattuck DW, Leahy RM. BrainSuite: an automated cortical surface identification tool. Med Image Anal. 2002;6(2):129–42.
pubmed: 12045000 doi: 10.1016/S1361-8415(02)00054-3
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Corroyer-Dulmont A, Pérès EA, Petit E, Guillamo JS, Varoqueaux N, Roussel S, et al. Detection of Glioblastoma response to temozolomide combined with bevacizumab based on µMRI and µPET imaging reveals [18F]-fluoro-l-thymidine as an early and robust predictive marker for treatment efficacy. Neuro-Oncol. 2013;15(1):41–56.
pubmed: 23115160 doi: 10.1093/neuonc/nos260
Troprès I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, et al. Vessel size imaging. Magn Reson Med. 2001;45(3):397–408.
pubmed: 11241696 doi: 10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.0.CO;2-3
Martinez-Heras E, Grussu F, Prados F, Solana E, Llufriu S. Diffusion-weighted imaging: recent advances and applications. Semin Ultrasound CT MRI. 2021;42(5):490–506.
doi: 10.1053/j.sult.2021.07.006
Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose–volume effects in the brain. Int J Radiat Oncol. 2010;76(3):S20–7.
doi: 10.1016/j.ijrobp.2009.02.091
Tinkle CL, Campbell K, Han Y, Li Y, Bianski B, Broniscer A, et al. Radiation dose response of neurologic symptoms during conformal radiotherapy for diffuse intrinsic pontine glioma. J Neurooncol. 2020;147(1):195–203.
pubmed: 32016716 pmcid: 7080561 doi: 10.1007/s11060-020-03415-w
de Groot JD, van Dijken BRJ, van der Weide HL, Enting RH. Hoorn A Van Der. Voxel based morphometry-detected white matter volume loss after multi-modality treatment in high grade glioma patients. PLoS ONE. 2023;18(5):e0275077.
pubmed: 37134064 pmcid: 10155950 doi: 10.1371/journal.pone.0275077
Fuentes D, Contreras J, Yu J, He R, Castillo E, Castillo R, et al. Morphometry-based measurements of the structural response to whole-brain radiation. Int J Comput Assist Radiol Surg. 2015;10(4):393–401.
pubmed: 25408306 doi: 10.1007/s11548-014-1128-3
Witzmann K, Raschke F, Troost EGC. MR Image changes of normal-appearing brain tissue after Radiotherapy. Cancers. 2021;13(7):1573.
pubmed: 33805542 pmcid: 8037886 doi: 10.3390/cancers13071573
Karunamuni R, Bartsch H, White NS, Moiseenko V, Carmona R, Marshall DC, et al. Dose-dependent cortical thinning after partial brain irradiation in high-Grade Glioma. Int J Radiat Oncol Biol Phys. 2016;94(2):297–304.
pubmed: 26853338 doi: 10.1016/j.ijrobp.2015.10.026
Seibert TM, Karunamuni R, Kaifi S, Burkeen J, Connor M, Krishnan AP, et al. Cerebral cortex regions selectively vulnerable to Radiation dose-dependent atrophy. Int J Radiat Oncol. 2017;97(5):910–8.
doi: 10.1016/j.ijrobp.2017.01.005
Palmer SL, Reddick WE, Glass JO, Gajjar A, Goloubeva O, Mulhern RK. Decline in Corpus Callosum volume among Pediatric patients with Medulloblastoma: longitudinal MR Imaging Study. AJNR Am J Neuroradiol. 2002;23(7):1088.
pubmed: 12169462 pmcid: 8185713
Redmond KJ, Hildreth M, Sair HI, Terezakis S, McNutt T, Kleinberg L, et al. Association of Neuronal Injury in the Genu and body of Corpus Callosum following cranial irradiation in children with impaired Cognitive Control: a prospective study. Int J Radiat Oncol Biol Phys. 2018;101(5):1234–42.
pubmed: 29908790 pmcid: 6050077 doi: 10.1016/j.ijrobp.2018.04.037
Zhong X, Huang B, Feng J, Yang W, Liu H. Delayed leukoencephalopathy of non-small cell lung cancer patients with brain metastases underwent whole brain radiation therapy. J Neurooncol. 2015;125(1):177–81.
pubmed: 26275366 doi: 10.1007/s11060-015-1888-9
Katsura M, Sato J, Akahane M, Furuta T, Mori H, Abe O. Recognizing Radiation-induced changes in the Central Nervous System: where to look and what to look for. Radiogr Rev Publ Radiol Soc N Am Inc. 2021;41(1):224–48.
Mota B, Dos Santos SE, Ventura-Antunes L, Jardim-Messeder D, Neves K, Kazu RS, et al. White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding. Proc Natl Acad Sci U S A. 2019;116(30):15253–61.
pubmed: 31285343 pmcid: 6660724 doi: 10.1073/pnas.1716956116
Ventura-Antunes L, Mota B, Herculano-Houzel S. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains. Front Neuroanat. 2013;7:3.
pubmed: 23576961 pmcid: 3620553 doi: 10.3389/fnana.2013.00003
Blommaert J, Schroyen G, Vandenbulcke M, Radwan A, Smeets A, Peeters R, et al. Age-dependent brain volume and neuropsychological changes after chemotherapy in breast cancer patients. Hum Brain Mapp. 2019;40(17):4994–5010.
pubmed: 31436005 pmcid: 6865635 doi: 10.1002/hbm.24753
Pérès EA, Etienne O, Grigis A, Boumezbeur F, Boussin FD, Le Bihan D. Longitudinal study of Irradiation-Induced Brain Microstructural alterations with S-Index, a Diffusion MRI Biomarker, and MR Spectroscopy. Int J Radiat Oncol. 2018;102(4):1244–54.
doi: 10.1016/j.ijrobp.2018.01.070
Constanzo J, Dumont M, Lebel R, Tremblay L, Whittingstall K, Masson-Côté L, et al. Diffusion MRI monitoring of specific structures in the irradiated rat brain. Magn Reson Med. 2018;80(4):1614–25.
pubmed: 29427386 doi: 10.1002/mrm.27112
Raschke F, Wesemann T, Wahl H, Appold S, Krause M, Linn J, et al. Reduced diffusion in normal appearing white matter of glioma patients following radio(chemo)therapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2019;140:110–5.
doi: 10.1016/j.radonc.2019.06.022
Cardenas VA, Tosun D, Chao LL, Fletcher PT, Joshi S, Weiner MW, et al. Voxel-wise co-analysis of macro- and microstructural brain alteration in mild cognitive impairment and Alzheimer’s disease using anatomical and diffusion MRI. J Neuroimaging off J Am Soc Neuroimaging. 2014;24(5):435–43.
doi: 10.1111/jon.12002
Zhao X, Wu Q, Chen Y, Song X, Ni H, Ming D. The Conjoint Analysis of Microstructural and morphological changes of Gray Matter during Aging. Front Neurol. 2019;10:184.
pubmed: 30930828 pmcid: 6423803 doi: 10.3389/fneur.2019.00184
Canu E, McLaren DG, Fitzgerald ME, Bendlin BB, Zoccatelli G, Alessandrini F, et al. Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer’s disease. J Alzheimers Dis JAD. 2010;19(3):963–76.
pubmed: 20157252 doi: 10.3233/JAD-2010-1295
Fletcher E, Carmichael O, Pasternak O, Maier-Hein KH, DeCarli C. Early brain loss in circuits affected by Alzheimer’s Disease is predicted by Fornix microstructure but may be independent of Gray Matter. Front Aging Neurosci. 2014;6:106.
pubmed: 24904414 pmcid: 4035735 doi: 10.3389/fnagi.2014.00106
Szulc-Lerch KU, Timmons BW, Bouffet E, Laughlin S, de Medeiros CB, Skocic J, et al. Repairing the brain with physical exercise: cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention. NeuroImage Clin. 2018;18:972–85.
pubmed: 29876282 pmcid: 5987848 doi: 10.1016/j.nicl.2018.02.021
Ware JB, Dolui S, Duda J, Gaggi N, Choi R, Detre J, et al. Relationship of Cerebral Blood Flow to cognitive function and recovery in early chronic traumatic brain Injury. J Neurotrauma. 2020;37(20):2180–7.
pubmed: 32349614 pmcid: 7580632 doi: 10.1089/neu.2020.7031
Asan L, Falfán-Melgoza C, Beretta CA, Sack M, Zheng L, Weber-Fahr W, et al. Cellular correlates of gray matter volume changes in magnetic resonance morphometry identified by two-photon microscopy. Sci Rep. 2021;11(1):4234.
pubmed: 33608622 pmcid: 7895945 doi: 10.1038/s41598-021-83491-8
Riyahi S, Choi W, Liu CJ, Zhong H, Wu AJ, Mechalakos JG, et al. Quantifying local tumor morphological changes with jacobian map for prediction of pathologic tumor response to chemo-radiotherapy in locally advanced esophageal cancer. Phys Med Biol. 2018;63(14):145020.
pubmed: 29911659 pmcid: 6064042 doi: 10.1088/1361-6560/aacd22
Lv K, Cao X, Wang R, Lu Q, Wang J, Zhang J, et al. Contralesional macrostructural plasticity in patients with frontal low-grade glioma: a voxel-based morphometry study. Neuroradiology. 2023;65(2):297–305.
pubmed: 36208304 doi: 10.1007/s00234-022-03059-9
Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage. 2009;46(3):786–802.
pubmed: 19195496 doi: 10.1016/j.neuroimage.2008.12.037
Rigaud B, Simon A, Castelli J, Lafond C, Acosta O, Haigron P, et al. Deformable image registration for radiation therapy: principle, methods, applications and evaluation. Acta Oncol. 2019;58(9):1225–37.
pubmed: 31155990 doi: 10.1080/0284186X.2019.1620331
Fletcher E, Gavett B, Harvey D, Farias ST, Olichney J, Beckett L, et al. Brain volume change and cognitive trajectories in aging. Neuropsychology. 2018;32(4):436–49.
pubmed: 29494196 pmcid: 6525569 doi: 10.1037/neu0000447
Cole JH, Jolly A, de Simoni S, Bourke N, Patel MC, Scott G, et al. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury. Brain J Neurol. 2018;141(3):822–36.
doi: 10.1093/brain/awx354
Petrone PM, Casamitjana A, Falcon C, Artigues M, Operto G, Cacciaglia R, et al. Prediction of amyloid pathology in cognitively unimpaired individuals using voxel-wise analysis of longitudinal structural brain MRI. Alzheimers Res Ther. 2019;11(1):72.
pubmed: 31421683 pmcid: 6698344 doi: 10.1186/s13195-019-0526-8

Auteurs

Carole Brunaud (C)

Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.

Samuel Valable (S)

Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.

Gwenn Ropars (G)

Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.

Fatima-Azzahra Dwiri (FA)

Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.

Mikaël Naveau (M)

Université de Caen Normandie, CNRS, INSERM, Normandie Université, UAR 3408/US50, GIP Cyceron, Caen, F-14000, France.

Jérôme Toutain (J)

Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.

Myriam Bernaudin (M)

Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.

Thomas Freret (T)

Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France.

Marianne Léger (M)

Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France.

Omar Touzani (O)

Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.

Elodie A Pérès (EA)

Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France. peres@cyceron.fr.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH