Reproducibility analysis of bioimpedance-based self-developed live cell assays.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
16 Jul 2024
Historique:
received: 18 07 2023
accepted: 08 07 2024
medline: 17 7 2024
pubmed: 17 7 2024
entrez: 16 7 2024
Statut: epublish

Résumé

Bioimpedance spectrum (BIS) measurements have a great future in in vitro experiments, meeting all the requirements for non-destructive and label-free methods. Nevertheless, a real basic research can provide the necessary milestones to achieve the success of the method. In this paper a self-developed technology-based approach for in vitro assays is proposed. Authors invented a special graphene-based measuring plate in order to assess the high sensitivity and reproducibility of introduced technique. The design of the self-produced BIS plates maximizes the detection capacity of qualitative changes in cell culture and it is robust against physical effects and artifacts. The plates do not influence the viability and proliferation, however the results are robust, stable and reproducible regardless of when and where the experiments are carried out. In this study, physiological saline concentrations, two cancer and stem cell lines were utilized. All the results were statistically tested and confirmed. The findings of the assays show, that the introduced BIS technology is appropriate to be used in vitro experiments with high efficacy. The experimental results demonstrate high correlation values across the replicates, and the model parameters suggested that the characteristic differences among the various cell lines can be detected using appropriate hypothesis tests.

Identifiants

pubmed: 39013939
doi: 10.1038/s41598-024-67061-2
pii: 10.1038/s41598-024-67061-2
doi:

Substances chimiques

Graphite 7782-42-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16380

Informations de copyright

© 2024. The Author(s).

Références

Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLoS Biol. 13, e1002165. https://doi.org/10.1371/journal.pbio.1002165 (2015).
doi: 10.1371/journal.pbio.1002165 pubmed: 26057340 pmcid: 4461318
Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454. https://doi.org/10.1038/533452a (2016).
doi: 10.1038/533452a pubmed: 27225100
Le, H. T. N., Kim, J., Park, J. & Cho, S. A review of electrical impedance characterization of cells for label-free and real-time assays. BioChip J. 13, 295–305. https://doi.org/10.1007/s13206-019-3401-6 (2019).
doi: 10.1007/s13206-019-3401-6
Gheorghiu, M. A short review on cell-based biosensing: Challenges and breakthroughs in biomedical analysis. J. Biomed. Res. 35, 255. https://doi.org/10.7555/jbr.34.20200128 (2021).
doi: 10.7555/jbr.34.20200128
Lukic, S. & Wegener, J. Impedimetric Monitoring of Cell-Based Assays https://doi.org/10.1002/9780470015902.a0025710 (2015).
Gupta, H. K. (ed.) Encyclopedia of Solid Earth Geophysics (Springer, 2021).
Areny, R. P. Tetrapolar bioimpedance measurements compared to four-wire resistance measurements. J. Electr. Bioimped. 9, 1–2. https://doi.org/10.2478/joeb-2018-0001 (2018).
doi: 10.2478/joeb-2018-0001
Romero-Ruiz, A., Linde, N., Keller, T. & Or, D. A review of geophysical methods for soil structure characterization. Rev. Geophys. 56, 672–697. https://doi.org/10.1029/2018rg000611 (2018).
doi: 10.1029/2018rg000611
Adler, A. & Holder, D. Electrical Impedance Tomography (CRC Press, 2021).
doi: 10.1201/9780429399886
Fu, B. & Freeborn, T. J. Estimating localized bio-impedance with measures from multiple redundant electrode configurations. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/embc.2018.8513382 (IEEE, 2018).
Naranjo-Hernández, D., Reina-Tosina, J. & Min, M. Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications. J. Sens. 1–42, 2019. https://doi.org/10.1155/2019/9210258 (2019).
doi: 10.1155/2019/9210258
Vizvari, Z. et al. Physical validation of a residual impedance rejection method during ultra-low frequency bio-impedance spectral measurements. Sensors 20, 4686. https://doi.org/10.3390/s20174686 (2020).
doi: 10.3390/s20174686 pubmed: 32825145 pmcid: 7506680
Mathews, R. J. & Freeborn, T. J. Modeling and experimental validation of parasitic capacitance effects on emulated bioimpedance measurements with high-impedance residuals. Int. J. Circuit Theor. Appl. 48, 1057–1069. https://doi.org/10.1002/cta.2773 (2020).
doi: 10.1002/cta.2773
Schwarz, M., Jendrusch, M. & Constantinou, I. Spatially resolved electrical impedance methods for cell and particle characterization. Electrophoresis 41, 65–80. https://doi.org/10.1002/elps.201900286 (2019).
doi: 10.1002/elps.201900286 pubmed: 31663624
Showkat, I., Khanday, F. A. & Beigh, M. R. A review of bio-impedance devices. Med. Biol. Eng. Comput. 61, 927–950. https://doi.org/10.1007/s11517-022-02763-1 (2023).
doi: 10.1007/s11517-022-02763-1 pubmed: 36637716
Lukaski, H. Biological indexes considered in the derivation of the bioelectrical impedance analysis. Am. J. Clin. Nutr. 64, 397S-404S. https://doi.org/10.1093/ajcn/64.3.397s (1996).
doi: 10.1093/ajcn/64.3.397s pubmed: 8780355
KYLE, U. Bioelectrical impedance analysis. Part i: Review of principles and methods. Clin. Nutr. 23, 1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004 (2004).
doi: 10.1016/j.clnu.2004.06.004 pubmed: 15380917
Kyle, U. G. et al. Bioelectrical impedance analysis—part II: Utilization in clinical practice. Clin. Nutr. 23, 1430–1453. https://doi.org/10.1016/j.clnu.2004.09.012 (2004).
doi: 10.1016/j.clnu.2004.09.012 pubmed: 15556267
Jaffrin, M. Y. & Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 30, 1257–1269. https://doi.org/10.1016/j.medengphy.2008.06.009 (2008).
doi: 10.1016/j.medengphy.2008.06.009 pubmed: 18676172
Kim, H. W. et al. Differentiation between normal and cancerous human urothelial cell lines using micro-electrical impedance spectroscopy at multiple frequencies. J. Med. Biol. Eng. 39, 86–95. https://doi.org/10.1007/s40846-018-0426-6 (2018).
doi: 10.1007/s40846-018-0426-6
Gelsinger, M. L., Tupper, L. L. & Matteson, D. S. Cell line classification using electric cell-substrate impedance sensing (ECIS). Int. J. Biostat. https://doi.org/10.1515/ijb-2018-0083 (2019).
doi: 10.1515/ijb-2018-0083 pubmed: 31811802
Bera, T. K. Bioelectrical impedance methods for noninvasive health monitoring: A review. J. Med. Eng. 1–28, 2014. https://doi.org/10.1155/2014/381251 (2014).
doi: 10.1155/2014/381251
Giaever, I. & Keese, C. R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. 81, 3761–3764. https://doi.org/10.1073/pnas.81.12.3761 (1984).
doi: 10.1073/pnas.81.12.3761 pubmed: 6587391 pmcid: 345299
Giaever, I. & Keese, C. R. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans. Biomed. Eng. BME–33, 242–247. https://doi.org/10.1109/tbme.1986.325896 (1986).
doi: 10.1109/tbme.1986.325896
Giaever, I. & Keese, C. R. Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. 88, 7896–7900. https://doi.org/10.1073/pnas.88.17.7896 (1991).
doi: 10.1073/pnas.88.17.7896 pubmed: 1881923 pmcid: 52411
Puetz, P., Behrent, A., Baeumner, A. & Wegener, J. Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays. Sens. Actuators B 321, 128443. https://doi.org/10.1016/j.snb.2020.128443 (2020).
doi: 10.1016/j.snb.2020.128443
Kasiviswanathan, U. et al. A portable standalone wireless electric cell-substrate impedance sensing (ECIS) system for assessing dynamic behavior of mammalian cells. J. Anal. Sci. Technol. https://doi.org/10.1186/s40543-020-00223-9 (2020).
doi: 10.1186/s40543-020-00223-9
Pennington, M. R. & de Walle, G. R. V. Electric cell-substrate impedance sensing to monitor viral growth and study cellular responses to infection with alphaherpesviruses in real time. MSphere 2, 1–10. https://doi.org/10.1128/msphere.00039-17 (2017).
doi: 10.1128/msphere.00039-17
Ebrahim, A. S. et al. Functional optimization of electric cell-substrate impedance sensing (ECIS) using human corneal epithelial cells. Sci. Rep. https://doi.org/10.1038/s41598-022-18182-z (2022).
doi: 10.1038/s41598-022-18182-z pubmed: 35986158 pmcid: 9391335
Chmayssem, A. et al. New microfluidic system for electrochemical impedance spectroscopy assessment of cell culture performance: Design and development of new electrode material. Biosensors 12, 452. https://doi.org/10.3390/bios12070452 (2022).
doi: 10.3390/bios12070452 pubmed: 35884254 pmcid: 9313146
Cole, K. S. & Cole, R. H. Dispersion and absorption in dielectrics i. Alternating current characteristics. J. Chem. Phys. 9, 341–351. https://doi.org/10.1063/1.1750906 (1941).
doi: 10.1063/1.1750906
Shi, F., Zhuang, J. & Kolb, J. F. Discrimination of different cell monolayers before and after exposure to nanosecond pulsed electric fields based on Cole–Cole and multivariate analysis. J. Phys. D 52, 495401. https://doi.org/10.1088/1361-6463/ab40d7 (2019).
doi: 10.1088/1361-6463/ab40d7
Zhuang, J. et al. Uncertainty quantification and sensitivity analysis for the electrical impedance spectroscopy of changes to intercellular junctions induced by cold atmospheric plasma. Molecules 27, 5861. https://doi.org/10.3390/molecules27185861 (2022).
doi: 10.3390/molecules27185861 pubmed: 36144597 pmcid: 9503961
Hays, M., Wojcieszak, S., Nusrat, N., Secondo, L. E. & Topsakal, E. Glucose-dependent dielectric Cole–Cole models of rat blood plasma from 500 mhz to 40 ghz for millimeter-wave glucose detection. Microw. Opt. Technol. Lett. 62, 2813–2820. https://doi.org/10.1002/mop.32371 (2020).
doi: 10.1002/mop.32371
Wang, J.-R. Experimental study of dielectric properties of human lung tissue in vitro. J. Med. Biol. Eng. https://doi.org/10.5405/jmbe.1774 (2014).
Collins, F. S. & Tabak, L. A. Policy: NIH plans to enhance reproducibility. Nature 505, 612–613. https://doi.org/10.1038/505612a (2014).
doi: 10.1038/505612a pubmed: 24482835 pmcid: 4058759
Meani, F. et al. Electrical impedance spectroscopy for ex-vivo breast cancer tissues analysis. Ann. Biomed. Eng. https://doi.org/10.1007/s10439-023-03159-4 (2023).
doi: 10.1007/s10439-023-03159-4 pubmed: 37061594
Aggas, J. R. et al. Real-time monitoring using multiplexed multi-electrode bioelectrical impedance spectroscopy for the stratification of vascularized composite allografts: A perspective on predictive analytics. Bioengineering 10, 434. https://doi.org/10.3390/bioengineering10040434 (2023).
doi: 10.3390/bioengineering10040434 pubmed: 37106621 pmcid: 10135882
Wang, H., Shi, X., Cao, X., Dong, X. & Yang, L. Discrimination between human normal renal tissue and renal cell carcinoma by dielectric properties using in-vitro BIA. Front. Physiol. https://doi.org/10.3389/fphys.2023.1121599 (2023).
doi: 10.3389/fphys.2023.1121599 pubmed: 38321985 pmcid: 10757630
Stupin, D. D. et al. Bioimpedance spectroscopy: Basics and applications. ACS Biomater. Sci. Eng. 7, 1962–1986. https://doi.org/10.1021/acsbiomaterials.0c01570 (2021).
doi: 10.1021/acsbiomaterials.0c01570 pubmed: 33749256
Iwakura, T., Marschner, J. A., Zhao, Z. B., Świderska, M. K. & Anders, H.-J. Electric cell-substrate impedance sensing in kidney research. Nephrol. Dial. Transpl. 36, 216–223. https://doi.org/10.1093/ndt/gfz191 (2019).
doi: 10.1093/ndt/gfz191
Atienzar, F. A. et al. The use of real-time cell analyzer technology in drug discovery: Defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. SLAS Discov. 16, 575–587. https://doi.org/10.1177/1087057111402825 (2011).
doi: 10.1177/1087057111402825
Borbas, K. et al. Process and Measuring System for Data Accuisition and Processing Soft-tomography Studies, eu patent, ep 3389487 edn. (2017).
Borbas, K. et al. Process and Measuring System for Data Accuisition and Processing Soft-tomography Studies, japan patent, 6791966 edn. (2021).
Borbas, K. et al. Process and Measuring System for Data Accuisition and Processing Soft-tomography Studies, usa patent, 10,699,446 edn. (2020).
Vizvari, Z. et al. A multi-chanel electrical impedance meter based on digital lock-in technology. Pollack Period. 14, 211–222. https://doi.org/10.1556/606.2019.14.2.19 (2019).
doi: 10.1556/606.2019.14.2.19
Gyorfi, N. et al. Development of bioimpedance-based measuring systems for diagnosis of non-alcoholic fatty liver disease. in 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), https://doi.org/10.1109/saci51354.2021.9465584 (IEEE, 2021).
Nadasdi, L. et al. Preparation and validation of self-developed bioimpedance electrode array for measurement of tumor cells. in 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), https://doi.org/10.1109/saci51354.2021.9465598 (IEEE, 2021).
Vajda, F. et al. Comparison of different clinical chemotherapeutical agents’ toxicity and cell response on mesenchymal stem cells and cancer cells. Cells 11, 2942. https://doi.org/10.3390/cells11192942 (2022).
doi: 10.3390/cells11192942 pubmed: 36230904 pmcid: 9563435
Abasi, S., Aggas, J. R., Garayar-Leyva, G. G., Walther, B. K. & Guiseppi-Elie, A. Bioelectrical impedance spectroscopy for monitoring mammalian cells and tissues under different frequency domains: A review. ACS Meas. Sci. Au 2, 495–516. https://doi.org/10.1021/acsmeasuresciau.2c00033 (2022).
doi: 10.1021/acsmeasuresciau.2c00033 pubmed: 36785772 pmcid: 9886004
Donna L Mohr, F. L., William J Wilson, F. L. & Freund, R. J. Statistical Methods (Elsevier Science Publishing Co Inc, 2021).
Gómez-Sánchez, J. & Felice, C. Description of corrections on electrode polarization impedance using isopotential interface factor. J. Electr. Bioimped. 3, 29–35. https://doi.org/10.5617/jeb.298 (2012).
doi: 10.5617/jeb.298

Auteurs

Zoltan Vizvari (Z)

Department of Environmental Engineering, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany str. 2, Pecs, 7624, Hungary. vizvari.zoltan@mik.pte.hu.
Multidisciplinary Medical and Engineering Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag str. 20, Pecs, 7624, Hungary. vizvari.zoltan@mik.pte.hu.
Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany str. 6, Pecs, 7624, Hungary. vizvari.zoltan@mik.pte.hu.

Nina Gyorfi (N)

Multidisciplinary Medical and Engineering Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag str. 20, Pecs, 7624, Hungary.
Institute of Physiology, Medical School, University of Pecs, Szigeti str. 12, Pecs, 7624, Hungary.

Gergo Maczko (G)

Multidisciplinary Medical and Engineering Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag str. 20, Pecs, 7624, Hungary.

Reka Varga (R)

Multidisciplinary Medical and Engineering Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag str. 20, Pecs, 7624, Hungary.
Institute of Physiology, Medical School, University of Pecs, Szigeti str. 12, Pecs, 7624, Hungary.

Rita Jakabfi-Csepregi (R)

Multidisciplinary Medical and Engineering Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag str. 20, Pecs, 7624, Hungary.
Department of Laboratory Medicine, Medical School, University of Pecs, Szigeti str. 12, Pecs, 7624, Hungary.

Zoltan Sari (Z)

Multidisciplinary Medical and Engineering Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag str. 20, Pecs, 7624, Hungary.
Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany str. 6, Pecs, 7624, Hungary.
Department of Technical Informatics, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany str. 6, Pecs, 7624, Hungary.

Andras Furedi (A)

Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudosok korutja 2, Budapest, 1117, Hungary.
Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklos ut 29-33, Budapest, 1121, Hungary.

Eszter Bajtai (E)

Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudosok korutja 2, Budapest, 1117, Hungary.
Semmelweis University Doctoral School, Ulloi str. 26, Budapest, 1085, Hungary.

Flora Vajda (F)

Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudosok korutja 2, Budapest, 1117, Hungary.
Semmelweis University Doctoral School, Ulloi str. 26, Budapest, 1085, Hungary.

Vladimir Tadic (V)

Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany str. 6, Pecs, 7624, Hungary.
John von Neumann Faculty of Informatics, Óbuda University, Becsi str. 96/B, Budapest, 1034, Hungary.

Peter Odry (P)

Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany str. 6, Pecs, 7624, Hungary.
John von Neumann Faculty of Informatics, Óbuda University, Becsi str. 96/B, Budapest, 1034, Hungary.

Zoltan Karadi (Z)

Institute of Physiology, Medical School, University of Pecs, Szigeti str. 12, Pecs, 7624, Hungary.

Attila Toth (A)

Multidisciplinary Medical and Engineering Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag str. 20, Pecs, 7624, Hungary.
Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany str. 6, Pecs, 7624, Hungary.
Institute of Physiology, Medical School, University of Pecs, Szigeti str. 12, Pecs, 7624, Hungary.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH