Reproducibility analysis of bioimpedance-based self-developed live cell assays.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 Jul 2024
16 Jul 2024
Historique:
received:
18
07
2023
accepted:
08
07
2024
medline:
17
7
2024
pubmed:
17
7
2024
entrez:
16
7
2024
Statut:
epublish
Résumé
Bioimpedance spectrum (BIS) measurements have a great future in in vitro experiments, meeting all the requirements for non-destructive and label-free methods. Nevertheless, a real basic research can provide the necessary milestones to achieve the success of the method. In this paper a self-developed technology-based approach for in vitro assays is proposed. Authors invented a special graphene-based measuring plate in order to assess the high sensitivity and reproducibility of introduced technique. The design of the self-produced BIS plates maximizes the detection capacity of qualitative changes in cell culture and it is robust against physical effects and artifacts. The plates do not influence the viability and proliferation, however the results are robust, stable and reproducible regardless of when and where the experiments are carried out. In this study, physiological saline concentrations, two cancer and stem cell lines were utilized. All the results were statistically tested and confirmed. The findings of the assays show, that the introduced BIS technology is appropriate to be used in vitro experiments with high efficacy. The experimental results demonstrate high correlation values across the replicates, and the model parameters suggested that the characteristic differences among the various cell lines can be detected using appropriate hypothesis tests.
Identifiants
pubmed: 39013939
doi: 10.1038/s41598-024-67061-2
pii: 10.1038/s41598-024-67061-2
doi:
Substances chimiques
Graphite
7782-42-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
16380Informations de copyright
© 2024. The Author(s).
Références
Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLoS Biol. 13, e1002165. https://doi.org/10.1371/journal.pbio.1002165 (2015).
doi: 10.1371/journal.pbio.1002165
pubmed: 26057340
pmcid: 4461318
Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454. https://doi.org/10.1038/533452a (2016).
doi: 10.1038/533452a
pubmed: 27225100
Le, H. T. N., Kim, J., Park, J. & Cho, S. A review of electrical impedance characterization of cells for label-free and real-time assays. BioChip J. 13, 295–305. https://doi.org/10.1007/s13206-019-3401-6 (2019).
doi: 10.1007/s13206-019-3401-6
Gheorghiu, M. A short review on cell-based biosensing: Challenges and breakthroughs in biomedical analysis. J. Biomed. Res. 35, 255. https://doi.org/10.7555/jbr.34.20200128 (2021).
doi: 10.7555/jbr.34.20200128
Lukic, S. & Wegener, J. Impedimetric Monitoring of Cell-Based Assays https://doi.org/10.1002/9780470015902.a0025710 (2015).
Gupta, H. K. (ed.) Encyclopedia of Solid Earth Geophysics (Springer, 2021).
Areny, R. P. Tetrapolar bioimpedance measurements compared to four-wire resistance measurements. J. Electr. Bioimped. 9, 1–2. https://doi.org/10.2478/joeb-2018-0001 (2018).
doi: 10.2478/joeb-2018-0001
Romero-Ruiz, A., Linde, N., Keller, T. & Or, D. A review of geophysical methods for soil structure characterization. Rev. Geophys. 56, 672–697. https://doi.org/10.1029/2018rg000611 (2018).
doi: 10.1029/2018rg000611
Adler, A. & Holder, D. Electrical Impedance Tomography (CRC Press, 2021).
doi: 10.1201/9780429399886
Fu, B. & Freeborn, T. J. Estimating localized bio-impedance with measures from multiple redundant electrode configurations. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/embc.2018.8513382 (IEEE, 2018).
Naranjo-Hernández, D., Reina-Tosina, J. & Min, M. Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications. J. Sens. 1–42, 2019. https://doi.org/10.1155/2019/9210258 (2019).
doi: 10.1155/2019/9210258
Vizvari, Z. et al. Physical validation of a residual impedance rejection method during ultra-low frequency bio-impedance spectral measurements. Sensors 20, 4686. https://doi.org/10.3390/s20174686 (2020).
doi: 10.3390/s20174686
pubmed: 32825145
pmcid: 7506680
Mathews, R. J. & Freeborn, T. J. Modeling and experimental validation of parasitic capacitance effects on emulated bioimpedance measurements with high-impedance residuals. Int. J. Circuit Theor. Appl. 48, 1057–1069. https://doi.org/10.1002/cta.2773 (2020).
doi: 10.1002/cta.2773
Schwarz, M., Jendrusch, M. & Constantinou, I. Spatially resolved electrical impedance methods for cell and particle characterization. Electrophoresis 41, 65–80. https://doi.org/10.1002/elps.201900286 (2019).
doi: 10.1002/elps.201900286
pubmed: 31663624
Showkat, I., Khanday, F. A. & Beigh, M. R. A review of bio-impedance devices. Med. Biol. Eng. Comput. 61, 927–950. https://doi.org/10.1007/s11517-022-02763-1 (2023).
doi: 10.1007/s11517-022-02763-1
pubmed: 36637716
Lukaski, H. Biological indexes considered in the derivation of the bioelectrical impedance analysis. Am. J. Clin. Nutr. 64, 397S-404S. https://doi.org/10.1093/ajcn/64.3.397s (1996).
doi: 10.1093/ajcn/64.3.397s
pubmed: 8780355
KYLE, U. Bioelectrical impedance analysis. Part i: Review of principles and methods. Clin. Nutr. 23, 1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004 (2004).
doi: 10.1016/j.clnu.2004.06.004
pubmed: 15380917
Kyle, U. G. et al. Bioelectrical impedance analysis—part II: Utilization in clinical practice. Clin. Nutr. 23, 1430–1453. https://doi.org/10.1016/j.clnu.2004.09.012 (2004).
doi: 10.1016/j.clnu.2004.09.012
pubmed: 15556267
Jaffrin, M. Y. & Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 30, 1257–1269. https://doi.org/10.1016/j.medengphy.2008.06.009 (2008).
doi: 10.1016/j.medengphy.2008.06.009
pubmed: 18676172
Kim, H. W. et al. Differentiation between normal and cancerous human urothelial cell lines using micro-electrical impedance spectroscopy at multiple frequencies. J. Med. Biol. Eng. 39, 86–95. https://doi.org/10.1007/s40846-018-0426-6 (2018).
doi: 10.1007/s40846-018-0426-6
Gelsinger, M. L., Tupper, L. L. & Matteson, D. S. Cell line classification using electric cell-substrate impedance sensing (ECIS). Int. J. Biostat. https://doi.org/10.1515/ijb-2018-0083 (2019).
doi: 10.1515/ijb-2018-0083
pubmed: 31811802
Bera, T. K. Bioelectrical impedance methods for noninvasive health monitoring: A review. J. Med. Eng. 1–28, 2014. https://doi.org/10.1155/2014/381251 (2014).
doi: 10.1155/2014/381251
Giaever, I. & Keese, C. R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. 81, 3761–3764. https://doi.org/10.1073/pnas.81.12.3761 (1984).
doi: 10.1073/pnas.81.12.3761
pubmed: 6587391
pmcid: 345299
Giaever, I. & Keese, C. R. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans. Biomed. Eng. BME–33, 242–247. https://doi.org/10.1109/tbme.1986.325896 (1986).
doi: 10.1109/tbme.1986.325896
Giaever, I. & Keese, C. R. Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. 88, 7896–7900. https://doi.org/10.1073/pnas.88.17.7896 (1991).
doi: 10.1073/pnas.88.17.7896
pubmed: 1881923
pmcid: 52411
Puetz, P., Behrent, A., Baeumner, A. & Wegener, J. Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays. Sens. Actuators B 321, 128443. https://doi.org/10.1016/j.snb.2020.128443 (2020).
doi: 10.1016/j.snb.2020.128443
Kasiviswanathan, U. et al. A portable standalone wireless electric cell-substrate impedance sensing (ECIS) system for assessing dynamic behavior of mammalian cells. J. Anal. Sci. Technol. https://doi.org/10.1186/s40543-020-00223-9 (2020).
doi: 10.1186/s40543-020-00223-9
Pennington, M. R. & de Walle, G. R. V. Electric cell-substrate impedance sensing to monitor viral growth and study cellular responses to infection with alphaherpesviruses in real time. MSphere 2, 1–10. https://doi.org/10.1128/msphere.00039-17 (2017).
doi: 10.1128/msphere.00039-17
Ebrahim, A. S. et al. Functional optimization of electric cell-substrate impedance sensing (ECIS) using human corneal epithelial cells. Sci. Rep. https://doi.org/10.1038/s41598-022-18182-z (2022).
doi: 10.1038/s41598-022-18182-z
pubmed: 35986158
pmcid: 9391335
Chmayssem, A. et al. New microfluidic system for electrochemical impedance spectroscopy assessment of cell culture performance: Design and development of new electrode material. Biosensors 12, 452. https://doi.org/10.3390/bios12070452 (2022).
doi: 10.3390/bios12070452
pubmed: 35884254
pmcid: 9313146
Cole, K. S. & Cole, R. H. Dispersion and absorption in dielectrics i. Alternating current characteristics. J. Chem. Phys. 9, 341–351. https://doi.org/10.1063/1.1750906 (1941).
doi: 10.1063/1.1750906
Shi, F., Zhuang, J. & Kolb, J. F. Discrimination of different cell monolayers before and after exposure to nanosecond pulsed electric fields based on Cole–Cole and multivariate analysis. J. Phys. D 52, 495401. https://doi.org/10.1088/1361-6463/ab40d7 (2019).
doi: 10.1088/1361-6463/ab40d7
Zhuang, J. et al. Uncertainty quantification and sensitivity analysis for the electrical impedance spectroscopy of changes to intercellular junctions induced by cold atmospheric plasma. Molecules 27, 5861. https://doi.org/10.3390/molecules27185861 (2022).
doi: 10.3390/molecules27185861
pubmed: 36144597
pmcid: 9503961
Hays, M., Wojcieszak, S., Nusrat, N., Secondo, L. E. & Topsakal, E. Glucose-dependent dielectric Cole–Cole models of rat blood plasma from 500 mhz to 40 ghz for millimeter-wave glucose detection. Microw. Opt. Technol. Lett. 62, 2813–2820. https://doi.org/10.1002/mop.32371 (2020).
doi: 10.1002/mop.32371
Wang, J.-R. Experimental study of dielectric properties of human lung tissue in vitro. J. Med. Biol. Eng. https://doi.org/10.5405/jmbe.1774 (2014).
Collins, F. S. & Tabak, L. A. Policy: NIH plans to enhance reproducibility. Nature 505, 612–613. https://doi.org/10.1038/505612a (2014).
doi: 10.1038/505612a
pubmed: 24482835
pmcid: 4058759
Meani, F. et al. Electrical impedance spectroscopy for ex-vivo breast cancer tissues analysis. Ann. Biomed. Eng. https://doi.org/10.1007/s10439-023-03159-4 (2023).
doi: 10.1007/s10439-023-03159-4
pubmed: 37061594
Aggas, J. R. et al. Real-time monitoring using multiplexed multi-electrode bioelectrical impedance spectroscopy for the stratification of vascularized composite allografts: A perspective on predictive analytics. Bioengineering 10, 434. https://doi.org/10.3390/bioengineering10040434 (2023).
doi: 10.3390/bioengineering10040434
pubmed: 37106621
pmcid: 10135882
Wang, H., Shi, X., Cao, X., Dong, X. & Yang, L. Discrimination between human normal renal tissue and renal cell carcinoma by dielectric properties using in-vitro BIA. Front. Physiol. https://doi.org/10.3389/fphys.2023.1121599 (2023).
doi: 10.3389/fphys.2023.1121599
pubmed: 38321985
pmcid: 10757630
Stupin, D. D. et al. Bioimpedance spectroscopy: Basics and applications. ACS Biomater. Sci. Eng. 7, 1962–1986. https://doi.org/10.1021/acsbiomaterials.0c01570 (2021).
doi: 10.1021/acsbiomaterials.0c01570
pubmed: 33749256
Iwakura, T., Marschner, J. A., Zhao, Z. B., Świderska, M. K. & Anders, H.-J. Electric cell-substrate impedance sensing in kidney research. Nephrol. Dial. Transpl. 36, 216–223. https://doi.org/10.1093/ndt/gfz191 (2019).
doi: 10.1093/ndt/gfz191
Atienzar, F. A. et al. The use of real-time cell analyzer technology in drug discovery: Defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. SLAS Discov. 16, 575–587. https://doi.org/10.1177/1087057111402825 (2011).
doi: 10.1177/1087057111402825
Borbas, K. et al. Process and Measuring System for Data Accuisition and Processing Soft-tomography Studies, eu patent, ep 3389487 edn. (2017).
Borbas, K. et al. Process and Measuring System for Data Accuisition and Processing Soft-tomography Studies, japan patent, 6791966 edn. (2021).
Borbas, K. et al. Process and Measuring System for Data Accuisition and Processing Soft-tomography Studies, usa patent, 10,699,446 edn. (2020).
Vizvari, Z. et al. A multi-chanel electrical impedance meter based on digital lock-in technology. Pollack Period. 14, 211–222. https://doi.org/10.1556/606.2019.14.2.19 (2019).
doi: 10.1556/606.2019.14.2.19
Gyorfi, N. et al. Development of bioimpedance-based measuring systems for diagnosis of non-alcoholic fatty liver disease. in 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), https://doi.org/10.1109/saci51354.2021.9465584 (IEEE, 2021).
Nadasdi, L. et al. Preparation and validation of self-developed bioimpedance electrode array for measurement of tumor cells. in 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), https://doi.org/10.1109/saci51354.2021.9465598 (IEEE, 2021).
Vajda, F. et al. Comparison of different clinical chemotherapeutical agents’ toxicity and cell response on mesenchymal stem cells and cancer cells. Cells 11, 2942. https://doi.org/10.3390/cells11192942 (2022).
doi: 10.3390/cells11192942
pubmed: 36230904
pmcid: 9563435
Abasi, S., Aggas, J. R., Garayar-Leyva, G. G., Walther, B. K. & Guiseppi-Elie, A. Bioelectrical impedance spectroscopy for monitoring mammalian cells and tissues under different frequency domains: A review. ACS Meas. Sci. Au 2, 495–516. https://doi.org/10.1021/acsmeasuresciau.2c00033 (2022).
doi: 10.1021/acsmeasuresciau.2c00033
pubmed: 36785772
pmcid: 9886004
Donna L Mohr, F. L., William J Wilson, F. L. & Freund, R. J. Statistical Methods (Elsevier Science Publishing Co Inc, 2021).
Gómez-Sánchez, J. & Felice, C. Description of corrections on electrode polarization impedance using isopotential interface factor. J. Electr. Bioimped. 3, 29–35. https://doi.org/10.5617/jeb.298 (2012).
doi: 10.5617/jeb.298