Cognitive profile, neuroimaging and fluid biomarkers in post-acute COVID-19 syndrome.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
05 06 2024
Historique:
received: 16 11 2023
accepted: 24 05 2024
medline: 6 6 2024
pubmed: 6 6 2024
entrez: 5 6 2024
Statut: epublish

Résumé

We aimed to characterize the cognitive profile of post-acute COVID-19 syndrome (PACS) patients with cognitive complaints, exploring the influence of biological and psychological factors. Participants with confirmed SARS-CoV-2 infection and cognitive complaints ≥ 8 weeks post-acute phase were included. A comprehensive neuropsychological battery (NPS) and health questionnaires were administered at inclusion and at 1, 3 and 6 months. Blood samples were collected at each visit, MRI scan at baseline and at 6 months, and, optionally, cerebrospinal fluid. Cognitive features were analyzed in relation to clinical, neuroimaging, and biochemical markers at inclusion and follow-up. Forty-nine participants, with a mean time from symptom onset of 10.4 months, showed attention-executive function (69%) and verbal memory (39%) impairment. Apathy (64%), moderate-severe anxiety (57%), and severe fatigue (35%) were prevalent. Visual memory (8%) correlated with total gray matter (GM) and subcortical GM volume. Neuronal damage and inflammation markers were within normal limits. Over time, cognitive test scores, depression, apathy, anxiety scores, MRI indexes, and fluid biomarkers remained stable, although fewer participants (50% vs. 75.5%; p = 0.012) exhibited abnormal cognitive evaluations at follow-up. Altered attention/executive and verbal memory, common in PACS, persisted in most subjects without association with structural abnormalities, elevated cytokines, or neuronal damage markers.

Identifiants

pubmed: 38839833
doi: 10.1038/s41598-024-63071-2
pii: 10.1038/s41598-024-63071-2
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12927

Informations de copyright

© 2024. The Author(s).

Références

Bodro, M., Compta, Y. & Sánchez-Valle, R. Presentations and mechanisms of CNS disorders related to COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 8, e923 (2021).
pubmed: 33310765 doi: 10.1212/NXI.0000000000000923
Ceban, F. et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 101, 93–135 (2022).
pubmed: 34973396 doi: 10.1016/j.bbi.2021.12.020
Ariza, M. et al. Neuropsychological impairment in post-COVID condition individuals with and without cognitive complaints. Front. Aging Neurosci. 14, 1029842 (2022).
pubmed: 36337708 pmcid: 9631485 doi: 10.3389/fnagi.2022.1029842
Delgado-Alonso, C. et al. Cognitive dysfunction associated with COVID-19: A comprehensive neuropsychological study. J. Psychiatr. Res. 150, 40–46 (2022).
pubmed: 35349797 pmcid: 8943429 doi: 10.1016/j.jpsychires.2022.03.033
Díez-Cirarda, M. et al. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain 1, 384. https://doi.org/10.1093/brain/awac384 (2023).
doi: 10.1093/brain/awac384
García-Sánchez, C. et al. Neuropsychological deficits in patients with cognitive complaints after COVID-19. Brain Behav. 12, e2508 (2022).
pubmed: 35137561 pmcid: 8933779 doi: 10.1002/brb3.2508
Graham, E. L. et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 ‘long haulers’. Ann. Clin. Transl. Neurol. 8, 1073–1085 (2021).
pubmed: 33755344 pmcid: 8108421 doi: 10.1002/acn3.51350
Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J. & Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. Health 9, 100163 (2020).
pubmed: 33111132 pmcid: 7581383 doi: 10.1016/j.bbih.2020.100163
Malik, P. et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL): A systematic review and meta-analysis. J. Med. Virol. 94, 253–262 (2022).
pubmed: 34463956 doi: 10.1002/jmv.27309
Carfì, A., Bernabei, R., Landi, F., Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 324, 603–605 (2020).
pubmed: 32644129 pmcid: 7349096 doi: 10.1001/jama.2020.12603
Van Wambeke, E. et al. Two-years follow-up of symptoms and return to work in complex post-COVID-19 patients. J. Clin. Med. 12, 741 (2023).
pubmed: 36769389 pmcid: 9917586 doi: 10.3390/jcm12030741
Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).
pubmed: 36639608 pmcid: 9839201 doi: 10.1038/s41579-022-00846-2
Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021).
pubmed: 33753937 pmcid: 8893149 doi: 10.1038/s41591-021-01283-z
Guasp, M. et al. CSF biomarkers in COVID-19 associated encephalopathy and encephalitis predict long-term outcome. Front. Immunol. 13, 866153 (2022).
pubmed: 35479062 pmcid: 9035899 doi: 10.3389/fimmu.2022.866153
Peluso, M. J. et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J. Infect. Dis. 224, 1839–1848 (2021).
pubmed: 34677601 pmcid: 8643408 doi: 10.1093/infdis/jiab490
Schultheiß, C. et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. CR Med. 3, 100663 (2022).
Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).
pubmed: 35255491 pmcid: 9046077 doi: 10.1038/s41586-022-04569-5
Qin, Y. et al. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J. Clin. Invest. 131, e147329 (2021).
pubmed: 33630760 pmcid: 8262559 doi: 10.1172/JCI147329
Besteher, B. et al. Larger gray matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res. 317, 114836 (2022).
pubmed: 36087363 pmcid: 9444315 doi: 10.1016/j.psychres.2022.114836
Lu, Y. et al. Cerebral micro-structural changes in COVID-19 patients: An MRI-based 3-month follow-up study. EClinicalMedicine 25, 100484 (2020).
pubmed: 32838240 pmcid: 7396952 doi: 10.1016/j.eclinm.2020.100484
Andriuta, D. et al. Clinical and imaging determinants of neurocognitive disorders in post-acute COVID-19 patients with cognitive complaints. J. Alzheimers Dis. 87, 1239–1250 (2022).
pubmed: 35431242 doi: 10.3233/JAD-215506
Gomar, J. J. et al. Validation of the word accentuation test (TAP) as a means of estimating premorbid IQ in Spanish speakers. Schizophr. Res. 128, 175–176 (2011).
pubmed: 21144711 doi: 10.1016/j.schres.2010.11.016
Grober, E. & Buschke, H. Genuine memory deficits in dementia. Dev. Neuropsychol. 3, 13–36 (1987).
doi: 10.1080/87565648709540361
Le Osterrieth, P. A. test de copie d’une figure complexe; contribution à l’étude de la perception et de la mémoire [Test of copying a complex figure; contribution to the study of perception and memory]. Arch. Psychol. 30, 206–356 (1944).
Kaplan, E., Goodglass, H. & Weintraub, S. Boston Naming Test (Springer, 2001).
Roth, C. Boston diagnostic aphasia examination. In Encyclopedia of Clinical Neuropsychology (eds Kreutzer, J. S. et al.) 428–430 (Springer, 2011). https://doi.org/10.1007/978-0-387-79948-3_868 .
doi: 10.1007/978-0-387-79948-3_868
Reitan, R. Trail Making Test (TMT) (Reitan Neuropsychology Laboratory, 1994).
Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).
doi: 10.1037/h0054651
Smith A. Symbol digits modalities test. in Learning Disorders 83–91 (Western Psychological Services, 1968).
Wechsler, D. Wechsler adult intelligence scale-fourth edition. Am. Psychol. Assoc. https://doi.org/10.1037/t15169-000 (2012).
doi: 10.1037/t15169-000
Benton, A. L., Hamsher, D. S. K. & Sivan, A. B. Controlled oral word association. Test. https://doi.org/10.1037/t10132-000 (1983).
doi: 10.1037/t10132-000
Grau-Guinea, L. et al. Development, equivalence study, and normative data of version B of the Spanish-language free and cued selective reminding test. Neurologia 36, 353–360 (2021).
pubmed: 34714233 doi: 10.1016/j.nrl.2018.02.002
Peña-Casanova, J. et al. Spanish multicenter normative studies (NEURONORMA Project): Norms for Boston naming test and token test. Arch. Clin. Neuropsychol. 24, 343–354 (2009).
pubmed: 19648582 doi: 10.1093/arclin/acp039
Beck, A. T., Steer, R. A. & Brown, G. BDI-II (Beck Depression Inventory Manual, 1996).
Sanz, J., Navarro, M. & Vazquez, C. Adaptación española del Inventario para la Depresión de Beck-II (BDI-II): 2. Propiedades psicométricas en población general. Clín. Salud 29, 249–280 (2003).
Beck, A. T., Epstein, N., Brown, G. & Steer, R. Beck Anxiety Inventory. https://doi.org/10.1037/t02025-000 (1988).
Starkstein, S. E. et al. Apathy Scale. https://doi.org/10.1037/t34696-000 (1992).
Rami, L. et al. The subjective cognitive decline questionnaire (SCD-Q): A validation study. J. Alzheimers Dis. 41, 453–466 (2014).
pubmed: 24625794 doi: 10.3233/JAD-132027
Munguía-Izquierdo, D. et al. Multidimensional fatigue inventory: Spanish adaptation and psychometric properties for fibromyalgia patients The Al-Andalus study. Clin. Exp. Rheumatol. 30, 94–102 (2012).
pubmed: 23261007
Alonso, J. et al. Population reference values of the Spanish version of the Health Questionnaire SF-36. Med. Clin. 111, 410–416 (1998).
Ware, J. E. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).
pubmed: 1593914 doi: 10.1097/00005650-199206000-00002
Jenkinson, C., Coulter, A. & Wright, L. Short form 36 (SF36) health survey questionnaire: Normative data for adults of working age. BMJ 306, 1437–1440 (1993).
pubmed: 8518639 pmcid: 1677870 doi: 10.1136/bmj.306.6890.1437
Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 97, 11050–11055 (2000).
pubmed: 10984517 pmcid: 27146 doi: 10.1073/pnas.200033797
Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61, 1402–1418 (2012).
pubmed: 22430496 doi: 10.1016/j.neuroimage.2012.02.084
Fischl, B. et al. Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11–22 (2004).
pubmed: 14654453 doi: 10.1093/cercor/bhg087
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).
pubmed: 16530430 doi: 10.1016/j.neuroimage.2006.01.021
Seidman, L. J. et al. Reduced subcortical brain volumes in nonpsychotic siblings of schizophrenic patients: A pilot magnetic resonance imaging study. Am. J. Med. Genet. Neuropsychiatr. Genet. 74, 507–514 (1997).
doi: 10.1002/(SICI)1096-8628(19970919)74:5<507::AID-AJMG11>3.0.CO;2-G
Guasp, M. et al. Thymoma and autoimmune encephalitis: Clinical manifestations and antibodies. Neurol. Neuroimmunol. Neuroinflamm. 8, 1053 (2021).
doi: 10.1212/NXI.0000000000001053
Lai, M. et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann. Neurol. 65, 424–434 (2009).
pubmed: 19338055 pmcid: 2677127 doi: 10.1002/ana.21589
Hanin, A. et al. Cytokines in new-onset refractory status epilepticus predict outcomes. Ann. Neurol. 94, 75–90 (2023).
pubmed: 36871188 doi: 10.1002/ana.26627
Jiang, J. X. et al. Novel surrogate markers of CNS inflammation in CSF in the diagnosis of autoimmune encephalitis. Front. Neurol. 10, 1390 (2020).
pubmed: 32116981 pmcid: 7034172 doi: 10.3389/fneur.2019.01390
Liu, C. et al. Cytokines: From clinical significance to quantification. Adv. Sci. 8, 2004433 (2021).
doi: 10.1002/advs.202004433
Sorokin, M. et al. Risk assessment of psychiatric complications in infectious diseases: CALCulation of prognostic indices on example of COVID-19. Front. Psychiatry 15, 1666 (2024).
doi: 10.3389/fpsyt.2024.1341666
Bungenberg, J. et al. Characteristic functional connectome related to Post-COVID-19 syndrome. Sci. Rep. 14, 4997 (2024).
pubmed: 38424415 pmcid: 10904373 doi: 10.1038/s41598-024-54554-3
Cecchetti, G. et al. Cognitive, EEG, and MRI features of COVID-19 survivors: A 10-month study. J. Neurol. 269, 3400–3412 (2022).
pubmed: 35249144 pmcid: 8898558 doi: 10.1007/s00415-022-11047-5
Del Brutto, O. H. et al. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: A longitudinal prospective study nested to a population cohort. Eur. J. Neurol. 28, 3245–3253 (2021).
pubmed: 33576150 pmcid: 8014083 doi: 10.1111/ene.14775
Voruz, P. et al. Persistence and emergence of new neuropsychological deficits following SARS-CoV-2 infection: A follow-up assessment of the Geneva COVID-COG cohort. J. Glob. Health 14, 05008 (2024).
pubmed: 38452292 pmcid: 10919907 doi: 10.7189/jogh.14.05008
Brown, L. A. et al. The unique contribution of depression to cognitive impairment in post-acute sequelae of SARS-CoV-2 infection. Brain Behav. Immun. Health 22, 100460 (2022).
pubmed: 35403066 pmcid: 8983478 doi: 10.1016/j.bbih.2022.100460
Schild, A.-K. et al. Multidomain cognitive impairment in non-hospitalized patients with the post-COVID-19 syndrome: Results from a prospective monocentric cohort. J. Neurol. 270, 1215–1223 (2023).
pubmed: 36422669 doi: 10.1007/s00415-022-11444-w
Aiyegbusi, O. L. et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 114, 428–442 (2021).
pubmed: 34265229 pmcid: 8450986 doi: 10.1177/01410768211032850
Delgado-Alonso, C. et al. Unraveling brain fog in post-COVID syndrome: Relationship between subjective cognitive complaints and cognitive function, fatigue, and neuropsychiatric symptoms. Eur. J. Neurol. https://doi.org/10.1111/ene.16084 (2023).
doi: 10.1111/ene.16084 pubmed: 37797297
Altuna, M., Sánchez-Saudinós, M. B. & Lleó, A. Cognitive symptoms after COVID-19. Neurol. Perspect. 1, S16–S24 (2021).
pubmed: 38620975 pmcid: 8669718 doi: 10.1016/j.neurop.2021.10.005
De Lorenzo, R. et al. Blood neurofilament light chain and total tau levels at admission predict death in COVID-19 patients. J. Neurol. 268, 4436–4442 (2021).
pubmed: 33973106 pmcid: 8108733 doi: 10.1007/s00415-021-10595-6
Kanberg, N. et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine 70, 103512 (2021).
pubmed: 34333238 pmcid: 8320425 doi: 10.1016/j.ebiom.2021.103512
Moghimi, N. et al. The neurological manifestations of post-acute sequelae of SARS-CoV-2 infection. Curr. Neurol. Neurosci. Rep. 21, 44 (2021).
pubmed: 34181102 pmcid: 8237541 doi: 10.1007/s11910-021-01130-1
Ramakrishnan, R. K., Kashour, T., Hamid, Q., Halwani, R. & Tleyjeh, I. M. Unraveling the mystery surrounding post-acute sequelae of COVID-19. Front. Immunol. 12, 6029 (2021).
doi: 10.3389/fimmu.2021.686029
Peluso, M. J. et al. Plasma markers of neurologic injury and inflammation in people with self-reported neurologic postacute sequelae of SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm. 9, 3 (2022).
doi: 10.1212/NXI.0000000000200003
Swank, Z. et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin. Infect. Dis. 76, e487–e490 (2023).
pubmed: 36052466 doi: 10.1093/cid/ciac722
Boesl, F. et al. Cognitive decline in post-COVID-19 syndrome does not correspond with persisting neuronal or astrocytic damage. Sci. Rep. 14, 5326 (2024).
pubmed: 38438479 pmcid: 10912552 doi: 10.1038/s41598-024-55881-1
Acosta-Ampudia, Y. et al. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 syndrome. J. Infect. Dis. 225, 2155–2162 (2022).
pubmed: 35079804 doi: 10.1093/infdis/jiac017
Alvarez, M. et al. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front. Aging Neurosci. 14, 1–10 (2022).
doi: 10.3389/fnagi.2022.1020092
Zhou, H. et al. The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 129, 98–102 (2020).
pubmed: 32912598 pmcid: 7324344 doi: 10.1016/j.jpsychires.2020.06.022
Ferrando, S. J. et al. Neuropsychological, medical, and psychiatric findings after recovery from acute COVID-19: A cross-sectional study. J. Acad. Consult. Liaison Psychiatry 63, 474–484 (2022).
pubmed: 35085824 pmcid: 8786396 doi: 10.1016/j.jaclp.2022.01.003
Nuber-Champier, A. et al. Acute TNFα levels predict cognitive impairment 6–9 months after COVID-19 infection. Psychoneuroendocrinology https://doi.org/10.1016/j.psyneuen.2023.106104 (2023).
doi: 10.1016/j.psyneuen.2023.106104 pubmed: 37380558 pmcid: 10292659
Bai, F. et al. Female gender is associated with long COVID syndrome: a prospective cohort study. Clin. Microbiol. Infect. 28(611), e9-611 (2022).

Auteurs

Núria Guillén (N)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.

Agnès Pérez-Millan (A)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.
Institut de Neurociències, Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain.
Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain.

Neus Falgàs (N)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.

Gema M Lledó-Ibáñez (GM)

Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Spain.

Lorena Rami (L)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.

Jordi Sarto (J)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.

Maria A Botí (MA)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.

Cristina Arnaldos-Pérez (C)

Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.
Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain.

Raquel Ruiz-García (R)

Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.
Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain.

Laura Naranjo (L)

Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.
Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain.

Bàrbara Segura (B)

Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.
Institut de Neurociències, Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain.
Medical Psychology Unit, Department of Medicine, University of Barcelona, Barcelona, Spain.
Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.

Mircea Balasa (M)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.

Roser Sala-Llonch (R)

Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.
Institut de Neurociències, Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain.
Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.

Albert Lladó (A)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.
Institut de Neurociències, Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain.

Sarah M Gray (SM)

Sage Therapeutics, Cambridge, USA.

Jason K Johannesen (JK)

Sage Therapeutics, Cambridge, USA.

Madeline M Pantoni (MM)

Sage Therapeutics, Cambridge, USA.

Grant A Rutledge (GA)

Sage Therapeutics, Cambridge, USA.

Ruta Sawant (R)

Sage Therapeutics, Cambridge, USA.

Yi Wang (Y)

Sage Therapeutics, Cambridge, USA.

Luke S Watson (LS)

Sage Therapeutics, Cambridge, USA.

Josep Dalmau (J)

Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain.
Institut de Neurociències, Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain.
Department of Neurology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.
Enfermedades Raras, Centro de Investigación Biomédica en Red, Madrid, Spain.
Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.

Raquel Sanchez-Valle (R)

Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain. rsanchez@clinic.cat.
Fundació Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain. rsanchez@clinic.cat.
Institut de Neurociències, Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain. rsanchez@clinic.cat.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH