Cognitive profile, neuroimaging and fluid biomarkers in post-acute COVID-19 syndrome.
Cognitive symptoms
Cytokines
Longitudinal study
MRI
Post-acute COVID-19
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 06 2024
05 06 2024
Historique:
received:
16
11
2023
accepted:
24
05
2024
medline:
6
6
2024
pubmed:
6
6
2024
entrez:
5
6
2024
Statut:
epublish
Résumé
We aimed to characterize the cognitive profile of post-acute COVID-19 syndrome (PACS) patients with cognitive complaints, exploring the influence of biological and psychological factors. Participants with confirmed SARS-CoV-2 infection and cognitive complaints ≥ 8 weeks post-acute phase were included. A comprehensive neuropsychological battery (NPS) and health questionnaires were administered at inclusion and at 1, 3 and 6 months. Blood samples were collected at each visit, MRI scan at baseline and at 6 months, and, optionally, cerebrospinal fluid. Cognitive features were analyzed in relation to clinical, neuroimaging, and biochemical markers at inclusion and follow-up. Forty-nine participants, with a mean time from symptom onset of 10.4 months, showed attention-executive function (69%) and verbal memory (39%) impairment. Apathy (64%), moderate-severe anxiety (57%), and severe fatigue (35%) were prevalent. Visual memory (8%) correlated with total gray matter (GM) and subcortical GM volume. Neuronal damage and inflammation markers were within normal limits. Over time, cognitive test scores, depression, apathy, anxiety scores, MRI indexes, and fluid biomarkers remained stable, although fewer participants (50% vs. 75.5%; p = 0.012) exhibited abnormal cognitive evaluations at follow-up. Altered attention/executive and verbal memory, common in PACS, persisted in most subjects without association with structural abnormalities, elevated cytokines, or neuronal damage markers.
Identifiants
pubmed: 38839833
doi: 10.1038/s41598-024-63071-2
pii: 10.1038/s41598-024-63071-2
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12927Informations de copyright
© 2024. The Author(s).
Références
Bodro, M., Compta, Y. & Sánchez-Valle, R. Presentations and mechanisms of CNS disorders related to COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 8, e923 (2021).
pubmed: 33310765
doi: 10.1212/NXI.0000000000000923
Ceban, F. et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 101, 93–135 (2022).
pubmed: 34973396
doi: 10.1016/j.bbi.2021.12.020
Ariza, M. et al. Neuropsychological impairment in post-COVID condition individuals with and without cognitive complaints. Front. Aging Neurosci. 14, 1029842 (2022).
pubmed: 36337708
pmcid: 9631485
doi: 10.3389/fnagi.2022.1029842
Delgado-Alonso, C. et al. Cognitive dysfunction associated with COVID-19: A comprehensive neuropsychological study. J. Psychiatr. Res. 150, 40–46 (2022).
pubmed: 35349797
pmcid: 8943429
doi: 10.1016/j.jpsychires.2022.03.033
Díez-Cirarda, M. et al. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain 1, 384. https://doi.org/10.1093/brain/awac384 (2023).
doi: 10.1093/brain/awac384
García-Sánchez, C. et al. Neuropsychological deficits in patients with cognitive complaints after COVID-19. Brain Behav. 12, e2508 (2022).
pubmed: 35137561
pmcid: 8933779
doi: 10.1002/brb3.2508
Graham, E. L. et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 ‘long haulers’. Ann. Clin. Transl. Neurol. 8, 1073–1085 (2021).
pubmed: 33755344
pmcid: 8108421
doi: 10.1002/acn3.51350
Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J. & Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. Health 9, 100163 (2020).
pubmed: 33111132
pmcid: 7581383
doi: 10.1016/j.bbih.2020.100163
Malik, P. et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL): A systematic review and meta-analysis. J. Med. Virol. 94, 253–262 (2022).
pubmed: 34463956
doi: 10.1002/jmv.27309
Carfì, A., Bernabei, R., Landi, F., Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 324, 603–605 (2020).
pubmed: 32644129
pmcid: 7349096
doi: 10.1001/jama.2020.12603
Van Wambeke, E. et al. Two-years follow-up of symptoms and return to work in complex post-COVID-19 patients. J. Clin. Med. 12, 741 (2023).
pubmed: 36769389
pmcid: 9917586
doi: 10.3390/jcm12030741
Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).
pubmed: 36639608
pmcid: 9839201
doi: 10.1038/s41579-022-00846-2
Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021).
pubmed: 33753937
pmcid: 8893149
doi: 10.1038/s41591-021-01283-z
Guasp, M. et al. CSF biomarkers in COVID-19 associated encephalopathy and encephalitis predict long-term outcome. Front. Immunol. 13, 866153 (2022).
pubmed: 35479062
pmcid: 9035899
doi: 10.3389/fimmu.2022.866153
Peluso, M. J. et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J. Infect. Dis. 224, 1839–1848 (2021).
pubmed: 34677601
pmcid: 8643408
doi: 10.1093/infdis/jiab490
Schultheiß, C. et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. CR Med. 3, 100663 (2022).
Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).
pubmed: 35255491
pmcid: 9046077
doi: 10.1038/s41586-022-04569-5
Qin, Y. et al. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J. Clin. Invest. 131, e147329 (2021).
pubmed: 33630760
pmcid: 8262559
doi: 10.1172/JCI147329
Besteher, B. et al. Larger gray matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res. 317, 114836 (2022).
pubmed: 36087363
pmcid: 9444315
doi: 10.1016/j.psychres.2022.114836
Lu, Y. et al. Cerebral micro-structural changes in COVID-19 patients: An MRI-based 3-month follow-up study. EClinicalMedicine 25, 100484 (2020).
pubmed: 32838240
pmcid: 7396952
doi: 10.1016/j.eclinm.2020.100484
Andriuta, D. et al. Clinical and imaging determinants of neurocognitive disorders in post-acute COVID-19 patients with cognitive complaints. J. Alzheimers Dis. 87, 1239–1250 (2022).
pubmed: 35431242
doi: 10.3233/JAD-215506
Gomar, J. J. et al. Validation of the word accentuation test (TAP) as a means of estimating premorbid IQ in Spanish speakers. Schizophr. Res. 128, 175–176 (2011).
pubmed: 21144711
doi: 10.1016/j.schres.2010.11.016
Grober, E. & Buschke, H. Genuine memory deficits in dementia. Dev. Neuropsychol. 3, 13–36 (1987).
doi: 10.1080/87565648709540361
Le Osterrieth, P. A. test de copie d’une figure complexe; contribution à l’étude de la perception et de la mémoire [Test of copying a complex figure; contribution to the study of perception and memory]. Arch. Psychol. 30, 206–356 (1944).
Kaplan, E., Goodglass, H. & Weintraub, S. Boston Naming Test (Springer, 2001).
Roth, C. Boston diagnostic aphasia examination. In Encyclopedia of Clinical Neuropsychology (eds Kreutzer, J. S. et al.) 428–430 (Springer, 2011). https://doi.org/10.1007/978-0-387-79948-3_868 .
doi: 10.1007/978-0-387-79948-3_868
Reitan, R. Trail Making Test (TMT) (Reitan Neuropsychology Laboratory, 1994).
Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).
doi: 10.1037/h0054651
Smith A. Symbol digits modalities test. in Learning Disorders 83–91 (Western Psychological Services, 1968).
Wechsler, D. Wechsler adult intelligence scale-fourth edition. Am. Psychol. Assoc. https://doi.org/10.1037/t15169-000 (2012).
doi: 10.1037/t15169-000
Benton, A. L., Hamsher, D. S. K. & Sivan, A. B. Controlled oral word association. Test. https://doi.org/10.1037/t10132-000 (1983).
doi: 10.1037/t10132-000
Grau-Guinea, L. et al. Development, equivalence study, and normative data of version B of the Spanish-language free and cued selective reminding test. Neurologia 36, 353–360 (2021).
pubmed: 34714233
doi: 10.1016/j.nrl.2018.02.002
Peña-Casanova, J. et al. Spanish multicenter normative studies (NEURONORMA Project): Norms for Boston naming test and token test. Arch. Clin. Neuropsychol. 24, 343–354 (2009).
pubmed: 19648582
doi: 10.1093/arclin/acp039
Beck, A. T., Steer, R. A. & Brown, G. BDI-II (Beck Depression Inventory Manual, 1996).
Sanz, J., Navarro, M. & Vazquez, C. Adaptación española del Inventario para la Depresión de Beck-II (BDI-II): 2. Propiedades psicométricas en población general. Clín. Salud 29, 249–280 (2003).
Beck, A. T., Epstein, N., Brown, G. & Steer, R. Beck Anxiety Inventory. https://doi.org/10.1037/t02025-000 (1988).
Starkstein, S. E. et al. Apathy Scale. https://doi.org/10.1037/t34696-000 (1992).
Rami, L. et al. The subjective cognitive decline questionnaire (SCD-Q): A validation study. J. Alzheimers Dis. 41, 453–466 (2014).
pubmed: 24625794
doi: 10.3233/JAD-132027
Munguía-Izquierdo, D. et al. Multidimensional fatigue inventory: Spanish adaptation and psychometric properties for fibromyalgia patients The Al-Andalus study. Clin. Exp. Rheumatol. 30, 94–102 (2012).
pubmed: 23261007
Alonso, J. et al. Population reference values of the Spanish version of the Health Questionnaire SF-36. Med. Clin. 111, 410–416 (1998).
Ware, J. E. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).
pubmed: 1593914
doi: 10.1097/00005650-199206000-00002
Jenkinson, C., Coulter, A. & Wright, L. Short form 36 (SF36) health survey questionnaire: Normative data for adults of working age. BMJ 306, 1437–1440 (1993).
pubmed: 8518639
pmcid: 1677870
doi: 10.1136/bmj.306.6890.1437
Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 97, 11050–11055 (2000).
pubmed: 10984517
pmcid: 27146
doi: 10.1073/pnas.200033797
Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61, 1402–1418 (2012).
pubmed: 22430496
doi: 10.1016/j.neuroimage.2012.02.084
Fischl, B. et al. Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11–22 (2004).
pubmed: 14654453
doi: 10.1093/cercor/bhg087
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Seidman, L. J. et al. Reduced subcortical brain volumes in nonpsychotic siblings of schizophrenic patients: A pilot magnetic resonance imaging study. Am. J. Med. Genet. Neuropsychiatr. Genet. 74, 507–514 (1997).
doi: 10.1002/(SICI)1096-8628(19970919)74:5<507::AID-AJMG11>3.0.CO;2-G
Guasp, M. et al. Thymoma and autoimmune encephalitis: Clinical manifestations and antibodies. Neurol. Neuroimmunol. Neuroinflamm. 8, 1053 (2021).
doi: 10.1212/NXI.0000000000001053
Lai, M. et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann. Neurol. 65, 424–434 (2009).
pubmed: 19338055
pmcid: 2677127
doi: 10.1002/ana.21589
Hanin, A. et al. Cytokines in new-onset refractory status epilepticus predict outcomes. Ann. Neurol. 94, 75–90 (2023).
pubmed: 36871188
doi: 10.1002/ana.26627
Jiang, J. X. et al. Novel surrogate markers of CNS inflammation in CSF in the diagnosis of autoimmune encephalitis. Front. Neurol. 10, 1390 (2020).
pubmed: 32116981
pmcid: 7034172
doi: 10.3389/fneur.2019.01390
Liu, C. et al. Cytokines: From clinical significance to quantification. Adv. Sci. 8, 2004433 (2021).
doi: 10.1002/advs.202004433
Sorokin, M. et al. Risk assessment of psychiatric complications in infectious diseases: CALCulation of prognostic indices on example of COVID-19. Front. Psychiatry 15, 1666 (2024).
doi: 10.3389/fpsyt.2024.1341666
Bungenberg, J. et al. Characteristic functional connectome related to Post-COVID-19 syndrome. Sci. Rep. 14, 4997 (2024).
pubmed: 38424415
pmcid: 10904373
doi: 10.1038/s41598-024-54554-3
Cecchetti, G. et al. Cognitive, EEG, and MRI features of COVID-19 survivors: A 10-month study. J. Neurol. 269, 3400–3412 (2022).
pubmed: 35249144
pmcid: 8898558
doi: 10.1007/s00415-022-11047-5
Del Brutto, O. H. et al. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: A longitudinal prospective study nested to a population cohort. Eur. J. Neurol. 28, 3245–3253 (2021).
pubmed: 33576150
pmcid: 8014083
doi: 10.1111/ene.14775
Voruz, P. et al. Persistence and emergence of new neuropsychological deficits following SARS-CoV-2 infection: A follow-up assessment of the Geneva COVID-COG cohort. J. Glob. Health 14, 05008 (2024).
pubmed: 38452292
pmcid: 10919907
doi: 10.7189/jogh.14.05008
Brown, L. A. et al. The unique contribution of depression to cognitive impairment in post-acute sequelae of SARS-CoV-2 infection. Brain Behav. Immun. Health 22, 100460 (2022).
pubmed: 35403066
pmcid: 8983478
doi: 10.1016/j.bbih.2022.100460
Schild, A.-K. et al. Multidomain cognitive impairment in non-hospitalized patients with the post-COVID-19 syndrome: Results from a prospective monocentric cohort. J. Neurol. 270, 1215–1223 (2023).
pubmed: 36422669
doi: 10.1007/s00415-022-11444-w
Aiyegbusi, O. L. et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 114, 428–442 (2021).
pubmed: 34265229
pmcid: 8450986
doi: 10.1177/01410768211032850
Delgado-Alonso, C. et al. Unraveling brain fog in post-COVID syndrome: Relationship between subjective cognitive complaints and cognitive function, fatigue, and neuropsychiatric symptoms. Eur. J. Neurol. https://doi.org/10.1111/ene.16084 (2023).
doi: 10.1111/ene.16084
pubmed: 37797297
Altuna, M., Sánchez-Saudinós, M. B. & Lleó, A. Cognitive symptoms after COVID-19. Neurol. Perspect. 1, S16–S24 (2021).
pubmed: 38620975
pmcid: 8669718
doi: 10.1016/j.neurop.2021.10.005
De Lorenzo, R. et al. Blood neurofilament light chain and total tau levels at admission predict death in COVID-19 patients. J. Neurol. 268, 4436–4442 (2021).
pubmed: 33973106
pmcid: 8108733
doi: 10.1007/s00415-021-10595-6
Kanberg, N. et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine 70, 103512 (2021).
pubmed: 34333238
pmcid: 8320425
doi: 10.1016/j.ebiom.2021.103512
Moghimi, N. et al. The neurological manifestations of post-acute sequelae of SARS-CoV-2 infection. Curr. Neurol. Neurosci. Rep. 21, 44 (2021).
pubmed: 34181102
pmcid: 8237541
doi: 10.1007/s11910-021-01130-1
Ramakrishnan, R. K., Kashour, T., Hamid, Q., Halwani, R. & Tleyjeh, I. M. Unraveling the mystery surrounding post-acute sequelae of COVID-19. Front. Immunol. 12, 6029 (2021).
doi: 10.3389/fimmu.2021.686029
Peluso, M. J. et al. Plasma markers of neurologic injury and inflammation in people with self-reported neurologic postacute sequelae of SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm. 9, 3 (2022).
doi: 10.1212/NXI.0000000000200003
Swank, Z. et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin. Infect. Dis. 76, e487–e490 (2023).
pubmed: 36052466
doi: 10.1093/cid/ciac722
Boesl, F. et al. Cognitive decline in post-COVID-19 syndrome does not correspond with persisting neuronal or astrocytic damage. Sci. Rep. 14, 5326 (2024).
pubmed: 38438479
pmcid: 10912552
doi: 10.1038/s41598-024-55881-1
Acosta-Ampudia, Y. et al. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 syndrome. J. Infect. Dis. 225, 2155–2162 (2022).
pubmed: 35079804
doi: 10.1093/infdis/jiac017
Alvarez, M. et al. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front. Aging Neurosci. 14, 1–10 (2022).
doi: 10.3389/fnagi.2022.1020092
Zhou, H. et al. The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 129, 98–102 (2020).
pubmed: 32912598
pmcid: 7324344
doi: 10.1016/j.jpsychires.2020.06.022
Ferrando, S. J. et al. Neuropsychological, medical, and psychiatric findings after recovery from acute COVID-19: A cross-sectional study. J. Acad. Consult. Liaison Psychiatry 63, 474–484 (2022).
pubmed: 35085824
pmcid: 8786396
doi: 10.1016/j.jaclp.2022.01.003
Nuber-Champier, A. et al. Acute TNFα levels predict cognitive impairment 6–9 months after COVID-19 infection. Psychoneuroendocrinology https://doi.org/10.1016/j.psyneuen.2023.106104 (2023).
doi: 10.1016/j.psyneuen.2023.106104
pubmed: 37380558
pmcid: 10292659
Bai, F. et al. Female gender is associated with long COVID syndrome: a prospective cohort study. Clin. Microbiol. Infect. 28(611), e9-611 (2022).