A Marine Group A isolate relies on other growing bacteria for cell wall formation.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
03 Jun 2024
Historique:
received: 06 12 2023
accepted: 29 04 2024
medline: 4 6 2024
pubmed: 4 6 2024
entrez: 3 6 2024
Statut: aheadofprint

Résumé

Most of Earth's prokaryotes live under energy limitation, yet the full breadth of strategies that enable survival under such conditions remain poorly understood. Here we report the isolation of a bacterial strain, IA91, belonging to the candidate phylum Marine Group A (SAR406 or 'Candidatus Marinimicrobia') that is unable to synthesize the central cell wall compound peptidoglycan itself. Using cultivation experiments and microscopy, we show that IA91 growth and cell shape depend on other bacteria, deriving peptidoglycan, energy and carbon from exogenous muropeptide cell wall fragments released from growing bacteria. Reliance on exogenous muropeptides is traceable to the phylum's ancestor, with evidence of vertical inheritance across several classes. This dependency may be widespread across bacteria (16 phyla) based on the absence of key peptidoglycan synthesis genes. These results suggest that uptake of exogenous cell wall components could be a relevant and potentially common survival strategy in energy-limited habitats like the deep biosphere.

Identifiants

pubmed: 38831032
doi: 10.1038/s41564-024-01717-7
pii: 10.1038/s41564-024-01717-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
pubmed: 29784790 pmcid: 6016768 doi: 10.1073/pnas.1711842115
Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11, 83–94 (2013).
pubmed: 23321532 doi: 10.1038/nrmicro2939
Emilio, M. N., Michael, J. B., Natalia, G. Âl, Beatriz, M. Â. O. & Mikhail, V. Z. High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257, 1–11 (2003).
doi: 10.3354/meps257001
Lever, M. A. et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol. Rev. 39, 688–728 (2015).
pubmed: 25994609 doi: 10.1093/femsre/fuv020
Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive geneloss. mBio 3, e00036–12 (2012).
pubmed: 22448042 pmcid: 3315703 doi: 10.1128/mBio.00036-12
Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).
pubmed: 23801761 pmcid: 3710821 doi: 10.1073/pnas.1304246110
Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).
pubmed: 24739623 pmcid: 4817614 doi: 10.1038/ismej.2014.60
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).
pubmed: 30148503 doi: 10.1038/nbt.4229
Fry, J. C., Parkes, R. J., Cragg, B. A., Weightman, A. J. & Webster, G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol. Ecol. 66, 181–196 (2008).
pubmed: 18752622 doi: 10.1111/j.1574-6941.2008.00566.x
Lloyd, K. G., Steen, A. D., Ladau, J., Yin, J. & Crosby, L. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. mSystems 3, e00055–00018 (2018).
pubmed: 30273414 pmcid: 6156271 doi: 10.1128/mSystems.00055-18
Hawley, A. K. et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat. Commun. 8, 1507 (2017).
pubmed: 29142241 pmcid: 5688066 doi: 10.1038/s41467-017-01376-9
Lewis, W. H., Tahon, G., Geesink, P., Sousa, D. Z. & Ettema, T. J. G. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19, 225–240 (2021).
pubmed: 33093661 doi: 10.1038/s41579-020-00458-8
Fuhrman, J. A., McCallum, K. & Davis, A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59, 1294–1302 (1993).
pubmed: 7685997 pmcid: 182080 doi: 10.1128/aem.59.5.1294-1302.1993
Gordon, D. A. & Giovannoni, S. J. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl. Environ. Microbiol. 62, 1171–1177 (1996).
pubmed: 8919778 pmcid: 167883 doi: 10.1128/aem.62.4.1171-1177.1996
Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).
pubmed: 23851394 doi: 10.1038/nature12352
Hirakata, Y. et al. Identification and cultivation of anaerobic bacterial scavengers of dead cells. ISME J. 17, 2279–2289 (2023).
pubmed: 37872273 doi: 10.1038/s41396-023-01538-2
Mayer, C. et al. Bacteria’s different ways to recycle their own cell wall. Int. J. Med. Microbiol. 309, 151326 (2019).
pubmed: 31296364 doi: 10.1016/j.ijmm.2019.06.006
Borisova, M. et al. Peptidoglycan recycling in Gram-positive bacteria is crucial for survival in stationary phase. mBio 7, e00923–00916 (2016).
pubmed: 27729505 pmcid: 5061867 doi: 10.1128/mBio.00923-16
Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).
pubmed: 9184013 pmcid: 232610
Katayama, T. et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat. Commun. 11, 6381 (2020).
pubmed: 33318506 pmcid: 7736352 doi: 10.1038/s41467-020-20149-5
Katayama, T. & Kamagata, Y. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 177–195 (Springer, 2015).
Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).
pubmed: 31942073 pmcid: 7015854 doi: 10.1038/s41586-019-1916-6
Brumm, P. J. et al. Complete genome sequence of Thermus aquaticus Y51MC23. PLoS ONE 10, e0138674 (2015).
pubmed: 26465632 pmcid: 4605624 doi: 10.1371/journal.pone.0138674
Johnson, J. W., Fisher, J. F. & Mobashery, S. Bacterial cell-wall recycling. Ann. N. Y. Acad. Sci. 1277, 54–75 (2013).
pubmed: 23163477 doi: 10.1111/j.1749-6632.2012.06813.x
Jacobs, C., Huang, L. J., Bartowsky, E., Normark, S. & Park, J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J. 13, 4684–4694 (1994).
pubmed: 7925310 pmcid: 395403 doi: 10.1002/j.1460-2075.1994.tb06792.x
Dworkin, J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu. Rev. Microbiol. 68, 137–154 (2014).
pubmed: 24847956 doi: 10.1146/annurev-micro-091213-112844
Yoshimura, T. & Goto, M. D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases. FEBS J. 275, 3527–3537 (2008).
pubmed: 18564179 doi: 10.1111/j.1742-4658.2008.06516.x
Löffler, F. E. et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625–635 (2013).
pubmed: 22544797 doi: 10.1099/ijs.0.034926-0
Kube, M. et al. Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat. Biotechnol. 23, 1269–1273 (2005).
pubmed: 16116419 doi: 10.1038/nbt1131
Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).
pubmed: 9465100 pmcid: 19196 doi: 10.1073/pnas.95.4.1818
Embree, M., Liu, J. K., Al-Bassam, M. M. & Zengler, K. Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl Acad. Sci. USA 112, 15450–15455 (2015).
pubmed: 26621749 pmcid: 4687543 doi: 10.1073/pnas.1506034112
Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B
pubmed: 16267554 doi: 10.1038/nature04056
Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.-Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA 107, 769–774 (2010).
pubmed: 20080750 doi: 10.1073/pnas.0911476107
Stams, A. J. M. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7, 568–577 (2009).
pubmed: 19609258 doi: 10.1038/nrmicro2166
Renzi, F. et al. Glycan-foraging systems reveal the adaptation of Capnocytophaga canimorsus to the dog mouth. mBio 6, e02507 (2015).
pubmed: 25736888 pmcid: 4358021 doi: 10.1128/mBio.02507-14
Mayer, V. M. T. et al. Utilization of different MurNAc sources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG. BMC Microbiol. 20, 352 (2020).
pubmed: 33203363 pmcid: 7670621 doi: 10.1186/s12866-020-02006-z
Hottmann, I., Borisova, M., Schäffer, C. & Mayer, C. Peptidoglycan salvage enables the periodontal pathogen Tannerella forsythia to survive within the oral microbial community. Microb. Physiol. 31, 123–134 (2021).
pubmed: 34107471 doi: 10.1159/000516751
Sharma, A. Persistence of Tannerella forsythia and Fusobacterium nucleatum in dental plaque: a strategic alliance. Curr. Oral Health Rep. 7, 22–28 (2020).
pubmed: 36779221 pmcid: 9917731 doi: 10.1007/s40496-020-00254-6
Jørgensen, N. O., Stepanaukas, R., Pedersen, A. G., Hansen, M. & Nybroe, O. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiol. Ecol. 46, 269–280 (2003).
pubmed: 19719558 doi: 10.1016/S0168-6496(03)00194-6
Ramin, K. I. & Allison, S. D. Bacterial tradeoffs in growth rate and extracellular enzymes. Front. Microbiol. 10, 2956 (2019).
pubmed: 31921094 pmcid: 6933949 doi: 10.3389/fmicb.2019.02956
Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).
pubmed: 26575626 pmcid: 4697398 doi: 10.1073/pnas.1514974112
Schönheit, P., Buckel, W. & Martin, W. F. On the origin of heterotrophy. Trends Microbiol. 24, 12–25 (2016).
pubmed: 26578093 doi: 10.1016/j.tim.2015.10.003
Sajed, T. et al. ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 44, D495–D501 (2016).
pubmed: 26481353 doi: 10.1093/nar/gkv1060
Bradbeer, C., Woodrow, M. L. & Khalifah, L. I. Transport of vitamin B
pubmed: 1254550 pmcid: 236181 doi: 10.1128/jb.125.3.1032-1039.1976
Katayama, T. et al. Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers. ISME J. 9, 436–446 (2015).
pubmed: 25105906 doi: 10.1038/ismej.2014.140
Komagata, K. & Suzuki, K.-I. in Methods in Microbiology Vol. 19 (eds Colwell, R. R. & Grigorova, R.) 161–207 (Academic Press, 1988).
Malac, M., Beleggia, M., Kawasaki, M., Li, P. & Egerton, R. F. Convenient contrast enhancement by a hole-free phase plate. Ultramicroscopy 118, 77–89 (2012).
pubmed: 22743212 doi: 10.1016/j.ultramic.2012.02.004
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).
pubmed: 28594827 pmcid: 5481147 doi: 10.1371/journal.pcbi.1005595
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3, e000132 (2017).
pubmed: 29177090 pmcid: 5695209
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
pubmed: 24642063 doi: 10.1093/bioinformatics/btu153
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
pubmed: 34597405 pmcid: 8662613 doi: 10.1093/molbev/msab293
Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–d268 (2020).
pubmed: 31777944 doi: 10.1093/nar/gkz991
Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).
pubmed: 34980915 pmcid: 9287161 doi: 10.1038/s41587-021-01156-3
Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
pubmed: 17947321 pmcid: 2175337 doi: 10.1093/nar/gkm864
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
pubmed: 19801464 pmcid: 2786419 doi: 10.1128/AEM.01541-09
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
pubmed: 32011700 pmcid: 7182206 doi: 10.1093/molbev/msaa015
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690 pmcid: 3603318 doi: 10.1093/molbev/mst010
Capella-Gutiérrez, S., Sillaz-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
pubmed: 19505945 pmcid: 2712344 doi: 10.1093/bioinformatics/btp348
Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).
pubmed: 29670290 pmcid: 6030568 doi: 10.1038/s41586-018-0043-0
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
pubmed: 30423086 pmcid: 6129281 doi: 10.1093/bioinformatics/bty560
Shah, I. M., Laaberki, M. H., Popham, D. L. & Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486–496 (2008).
pubmed: 18984160 pmcid: 2892110 doi: 10.1016/j.cell.2008.08.039
Katayama, T. Data: A Marine Group A isolate relies on other growing bacteria for cell wall formation Zenodo https://doi.org/10.5281/zenodo.10617219 (2024).

Auteurs

Taiki Katayama (T)

Research Institute for Geo-Resources and Environment, Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. katayama.t@aist.go.jp.

Masaru K Nobu (MK)

Bioproduction Research Institute, AIST, Tsukuba, Japan.
Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.

Hiroyuki Imachi (H)

Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.

Naoki Hosogi (N)

EM Application Department, EM Business Unit, JEOL, Ltd., Akishima, Japan.

Xian-Ying Meng (XY)

Bioproduction Research Institute, AIST, Tsukuba, Japan.

Kana Morinaga (K)

Bioproduction Research Institute, AIST, Tsukuba, Japan.

Hideyoshi Yoshioka (H)

Research Institute for Geo-Resources and Environment, Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.

Hiroshi A Takahashi (HA)

Research Institute of Earthquake and Volcano Geology, GSJ, AIST, Tsukuba, Japan.

Yoichi Kamagata (Y)

Bioproduction Research Institute, AIST, Tsukuba, Japan.

Hideyuki Tamaki (H)

Bioproduction Research Institute, AIST, Tsukuba, Japan.

Classifications MeSH