The hepatoprotective effect of 4-phenyltetrahydroquinolines on carbon tetrachloride induced hepatotoxicity in rats through autophagy inhibition.


Journal

Biological research
ISSN: 0717-6287
Titre abrégé: Biol Res
Pays: England
ID NLM: 9308271

Informations de publication

Date de publication:
27 May 2024
Historique:
received: 04 01 2024
accepted: 25 04 2024
medline: 27 5 2024
pubmed: 27 5 2024
entrez: 26 5 2024
Statut: epublish

Résumé

The liver serves as a metabolic hub within the human body, playing a crucial role in various essential functions, such as detoxification, nutrient metabolism, and hormone regulation. Therefore, protecting the liver against endogenous and exogenous insults has become a primary focus in medical research. Consequently, the potential hepatoprotective properties of multiple 4-phenyltetrahydroquinolines inspired us to thoroughly study the influence of four specially designed and synthesized derivatives on carbon tetrachloride (CCl4)-induced liver injury in rats. Seventy-seven Wistar albino male rats weighing 140 ± 18 g were divided into eleven groups to investigate both the toxicity profile and the hepatoprotective potential of 4-phenyltetrahydroquinolines. An in-vivo hepatotoxicity model was conducted using CCl4 (1 ml/kg body weight, a 1:1 v/v mixture with corn oil, i.p.) every 72 h for 14 days. The concurrent treatment of rats with our newly synthesized compounds (each at a dose of 25 mg/kg body weight, suspended in 0.5% CMC, p.o.) every 24 h effectively lowered transaminases, preserved liver tissue integrity, and mitigated oxidative stress and inflammation. Moreover, the histopathological examination of liver tissues revealed a significant reduction in liver fibrosis, which was further supported by the immunohistochemical analysis of α-SMA. Additionally, the expression of the apoptotic genes BAX and BCL2 was monitored using real-time PCR, which showed a significant decrease in liver apoptosis. Further investigations unveiled the ability of the compounds to significantly decrease the expression of autophagy-related proteins, Beclin-1 and LC3B, consequently inhibiting autophagy. Finally, our computer-assisted simulation dockingonfirmed the obtained experimental activities. Our findings suggest that derivatives of 4-phenyltetrahydroquinoline demonstrate hepatoprotective properties in CCl4-induced liver damage and fibrosis in rats. The potential mechanism of action may be due to the inhibition of autophagy in liver cells.

Sections du résumé

BACKGROUND BACKGROUND
The liver serves as a metabolic hub within the human body, playing a crucial role in various essential functions, such as detoxification, nutrient metabolism, and hormone regulation. Therefore, protecting the liver against endogenous and exogenous insults has become a primary focus in medical research. Consequently, the potential hepatoprotective properties of multiple 4-phenyltetrahydroquinolines inspired us to thoroughly study the influence of four specially designed and synthesized derivatives on carbon tetrachloride (CCl4)-induced liver injury in rats.
METHODS AND RESULTS RESULTS
Seventy-seven Wistar albino male rats weighing 140 ± 18 g were divided into eleven groups to investigate both the toxicity profile and the hepatoprotective potential of 4-phenyltetrahydroquinolines. An in-vivo hepatotoxicity model was conducted using CCl4 (1 ml/kg body weight, a 1:1 v/v mixture with corn oil, i.p.) every 72 h for 14 days. The concurrent treatment of rats with our newly synthesized compounds (each at a dose of 25 mg/kg body weight, suspended in 0.5% CMC, p.o.) every 24 h effectively lowered transaminases, preserved liver tissue integrity, and mitigated oxidative stress and inflammation. Moreover, the histopathological examination of liver tissues revealed a significant reduction in liver fibrosis, which was further supported by the immunohistochemical analysis of α-SMA. Additionally, the expression of the apoptotic genes BAX and BCL2 was monitored using real-time PCR, which showed a significant decrease in liver apoptosis. Further investigations unveiled the ability of the compounds to significantly decrease the expression of autophagy-related proteins, Beclin-1 and LC3B, consequently inhibiting autophagy. Finally, our computer-assisted simulation dockingonfirmed the obtained experimental activities.
CONCLUSION CONCLUSIONS
Our findings suggest that derivatives of 4-phenyltetrahydroquinoline demonstrate hepatoprotective properties in CCl4-induced liver damage and fibrosis in rats. The potential mechanism of action may be due to the inhibition of autophagy in liver cells.

Identifiants

pubmed: 38797855
doi: 10.1186/s40659-024-00510-4
pii: 10.1186/s40659-024-00510-4
doi:

Substances chimiques

Carbon Tetrachloride CL2T97X0V0
Quinolines 0
Protective Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

32

Informations de copyright

© 2024. The Author(s).

Références

Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21):R1147–51.
pubmed: 29112863 pmcid: 5897118 doi: 10.1016/j.cub.2017.09.019
Moreira PR, Maioli MA, Medeiros HCD, Guelfi M, Pereira FTV, Mingatto FE. Protective effect of bixin on carbon tetrachloride-induced hepatotoxicity in rats. Biol Res. 2014;47(1):49.
pubmed: 25299839 pmcid: 4192761 doi: 10.1186/0717-6287-47-49
Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222312808 .
doi: 10.3390/ijms222312808 pubmed: 35008842 pmcid: 8745693
Harjumäki R, Pridgeon CS, Ingelman-Sundberg M. CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipid overload. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22158221 .
doi: 10.3390/ijms22158221 pubmed: 34360999 pmcid: 8348366
Massart J, Begriche K, Hartman JH, Fromenty B. Role of mitochondrial cytochrome P450 2E1 in healthy and diseased liver. Cells. 2022. https://doi.org/10.3390/cells11020288 .
doi: 10.3390/cells11020288 pubmed: 35053404 pmcid: 8774478
Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020. https://doi.org/10.3390/cells9040875 .
doi: 10.3390/cells9040875 pubmed: 32260126 pmcid: 7226751
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397–411.
pubmed: 28487545 doi: 10.1038/nrgastro.2017.38
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.
pubmed: 20225336 pmcid: 2990190 doi: 10.1002/path.2697
Zhang Y, Hua L, Lin C, Yuan M, Xu W, Raj DA, et al. Pien-Tze-Huang alleviates CCl4-induced liver fibrosis through the inhibition of HSC autophagy and the TGF-β1/Smad2 pathway. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.937484 .
doi: 10.3389/fphar.2022.937484 pubmed: 37077808 pmcid: 10107375
Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: time for translation? J Hepatol. 2019;70(5):985–98.
pubmed: 30711404 doi: 10.1016/j.jhep.2019.01.026
Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, Ibrahim S, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol. 2020;73(5):1144–54.
pubmed: 32389810 pmcid: 7572579 doi: 10.1016/j.jhep.2020.04.044
Peng X, Dai C, Liu Q, Li J, Qiu J. Curcumin attenuates on carbon tetrachloride-induced acute liver injury in mice via modulation of the Nrf2/HO-1 and TGF-β1/Smad3 pathway. Molecules. 2018;23(1):215.
pubmed: 29351226 pmcid: 6017508 doi: 10.3390/molecules23010215
Chang SN, Kim SH, Dey DK, Park SM, Nasif O, Bajpai VK, et al. 5-O-Demethylnobiletin alleviates CCl(4)-induced acute liver injury by equilibrating ROS-mediated apoptosis and autophagy induction. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22031083 .
doi: 10.3390/ijms22031083 pubmed: 35008778 pmcid: 8745341
Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33(2):105–36.
pubmed: 12708612 doi: 10.1080/713611034
Laleu B, Rubiano K, Yeo T, Hallyburton I, Anderson M, Crespo-Fernandez B, et al. Exploring a tetrahydroquinoline antimalarial hit from the medicines for malaria pathogen box and identification of its mode of resistance as PfeEF2. ChemMedChem. 2022;17(22): e202200393.
pubmed: 36129427 pmcid: 9827907 doi: 10.1002/cmdc.202200393
Méndez-Luna D, Morelos-Garnica LA, García-Vázquez JB, Bello M, Padilla M II, Fragoso-Vázquez MJ, et al. Modifications on the tetrahydroquinoline scaffold targeting a phenylalanine cluster on GPER as antiproliferative compounds against renal liver and pancreatic cancer cells. Pharmaceuticals. 2021. https://doi.org/10.3390/ph14010049 .
doi: 10.3390/ph14010049 pubmed: 33435260 pmcid: 7826836
Park I, Lee W, Yoo Y, Shin H, Oh J, Kim H, et al. Protective effect of tetrahydroquinolines from the edible insect allomyrina dichotoma on LPS-induced vascular inflammatory responses. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21103406 .
doi: 10.3390/ijms21103406 pubmed: 33419292 pmcid: 7795830
Ragab HM, Ashour HMA, Galal A, Ghoneim AI, Haidar HR. Synthesis and biological evaluation of some tacrine analogs: study of the effect of the chloro substituent on the acetylcholinesterase inhibitory activity. Monatshefte für Chemie - Chemical Monthly. 2016;147(3):539–52.
doi: 10.1007/s00706-015-1641-2
Vesga LC, Kronenberger T, Tonduru AK, Kita DH, Zattoni IF, Bernal CC, et al. Tetrahydroquinoline/4,5-dihydroisoxazole molecular hybrids as inhibitors of breast cancer resistance protein (BCRP/ABCG2). ChemMedChem. 2021;16(17):2686–94.
pubmed: 33844464 pmcid: 8518119 doi: 10.1002/cmdc.202100188
Zykova S, Shurov S, Savinkov A, Gugushvili N, Talismanov V, editors. Pharmacoprophylaxis of liver diseases: creating a new hepatoprotector. BIO Web of Conferences. EDP Sciences; 2020.
Ragab HM, Teleb M, Haidar HR, Gouda N. Chlorinated tacrine analogs: design, synthesis and biological evaluation of their anti-cholinesterase activity as potential treatment for Alzheimer’s disease. Bioorg Chem. 2019;86:557–68.
pubmed: 30782574 doi: 10.1016/j.bioorg.2019.02.033
Mroueh M, Faour WH, Shebaby WN, Daher CF, Ibrahim TM, Ragab HM. Synthesis, biological evaluation and modeling of hybrids from tetrahydro-1H-pyrazolo [3, 4-b] quinolines as dual cholinestrase and COX-2 inhibitors. Bioorg Chem. 2020;100: 103895.
pubmed: 32413626 doi: 10.1016/j.bioorg.2020.103895
Shang X-F, Morris-Natschke SL, Liu Y-Q, Li X-H, Zhang J-Y, Lee K-H. Biology of quinoline and quinazoline alkaloids. Alkaloids Chem Biol. 2022;88:1–47.
pubmed: 35305754 doi: 10.1016/bs.alkal.2021.08.002
Sorour AA, Aly RG, Ragab HM, Wahid A. Structure modification converts the hepatotoxic tacrine into novel hepatoprotective analogs. ACS Omega. 2024;9(2):2491–503.
pubmed: 38250371 pmcid: 10795119 doi: 10.1021/acsomega.3c07126
Raslan RR, Hessein SA, Fouad SA, Shmiess NA. Synthesis and antitumor evaluation of some new thiazolopyridine, nicotinonitrile, pyrazolopyridine, and polyhydroquinoline derivatives using ceric ammonium nitrate as a green catalyst. J Heterocycl Chem. 2022;59(5):832–46.
doi: 10.1002/jhet.4423
Asadbegi S, Bodaghifard MA, Mobinikhaledi A. Poly N,N-dimethylaniline-formaldehyde supported on silica-coated magnetic nanoparticles: a novel and retrievable catalyst for green synthesis of 2-amino-3-cyanopyridines. Res Chem Intermed. 2020;46:1629–43.
doi: 10.1007/s11164-017-3200-4
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
pubmed: 6606682 doi: 10.1016/0022-1759(83)90303-4
Zeashan H, Amresh G, Singh S, Rao CV. Hepatoprotective activity of Amaranthus spinosus in experimental animals. Food Chem Toxicol. 2008;46(11):3417–21.
pubmed: 18783728 doi: 10.1016/j.fct.2008.08.013
Rao GM, Rao CV, Pushpangadan P, Shirwaikar A. Hepatoprotective effects of rubiadin, a major constituent of Rubia Cordifolia Linn. J Ethnopharmacol. 2006;103(3):484–90.
pubmed: 16213120 doi: 10.1016/j.jep.2005.08.073
Goh CW, Aw CC, Lee JH, Chen CP, Browne ER. Pharmacokinetic and pharmacodynamic properties of cholinesterase inhibitors donepezil, tacrine, and galantamine in aged and young lister hooded rats. Drug Metab Dispos. 2011;39(3):402–11.
pubmed: 21148081 doi: 10.1124/dmd.110.035964
Shomer NH, Allen-Worthington KH, Hickman DL, Jonnalagadda M, Newsome JT, Slate AR, et al. Review of rodent euthanasia methods. J Am Assoc Lab Animal Sci. 2020;59(3):242–53.
doi: 10.30802/AALAS-JAALAS-19-000084
Brown RE, Jarvis KL, Hyland KJ. Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem. 1989;180(1):136–9.
pubmed: 2817336 doi: 10.1016/0003-2697(89)90101-2
Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31.
pubmed: 2233309 doi: 10.1016/0076-6879(90)86135-I
Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996. https://doi.org/10.1002/hep.510240201 .
doi: 10.1002/hep.510240201 pubmed: 8690394
Hamza AA, Lashin FM, Gamel M, Hassanin SO, Abdalla Y, Amin A. Hawthorn herbal preparation from crataegus oxyacantha attenuates in vivo carbon tetrachloride-induced hepatic fibrosis via modulating oxidative stress and inflammation. Antioxidants. 2020;9(12):1173.
pubmed: 33255507 pmcid: 7760839 doi: 10.3390/antiox9121173
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif). 2001;25(4):402–8.
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Lv M, Wang C, Li F, Peng J, Wen B, Gong Q, et al. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell. 2016;8(1):25–38.
pubmed: 27757847 pmcid: 5233613 doi: 10.1007/s13238-016-0328-8
Porubsky PR, Battaile KP, Scott EE. Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode. J Biol Chem. 2010;285(29):22282–90.
pubmed: 20463018 pmcid: 2903405 doi: 10.1074/jbc.M110.109017
Banjara S, Shimmon GL, Dixon LK, Netherton CL, Hinds MG, Kvansakul M. Crystal structure of African swine fever virus A179L with the autophagy regulator beclin. Viruses. 2019;11(9):789.
pubmed: 31461953 pmcid: 6784060 doi: 10.3390/v11090789
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.
pubmed: 17695343 doi: 10.3758/BF03193146
Said ES, Mohammed AH, Ali HM, Babiker AY, Alnughaymishi R, Althaqeel NZ, et al. Evaluation of hepatoprotective effect of Nebivolol and sodium copper Chlorophyllin on CCL
pubmed: 35302221
Yousefi-Manesh H, Dehpour AR, Ansari-Nasab S, Hemmati S, Sadeghi MA, Shahraki RH, et al. Hepatoprotective effects of standardized extracts from an ancient Italian apple variety (Mela Rosa dei Monti Sibillini) against carbon tetrachloride (CCl
pubmed: 32326503 pmcid: 7222006 doi: 10.3390/molecules25081816
Cacanyiova S, Cebova M, Simko F, Baka T, Bernatova I, Kluknavsky M, et al. The effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats treated with the ACE2 inhibitor MLN-4760. Biol Res. 2023;56(1):55.
pubmed: 37875978 pmcid: 10598995 doi: 10.1186/s40659-023-00466-x
Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516–37.
pubmed: 36990226 doi: 10.1016/j.jhep.2023.03.017
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–71.
pubmed: 30266282 doi: 10.1016/j.jhep.2018.09.014
Eagger SA, Levy R, Sahakian BJ. Tacrine in Alzheimer’s disease. Lancet (London, England). 1991;337(8748):989–92.
pubmed: 1673209 doi: 10.1016/0140-6736(91)92656-M
Tayeb HO, Yang HD, Price BH, Tarazi FI. Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther. 2012;134(1):8–25.
pubmed: 22198801 doi: 10.1016/j.pharmthera.2011.12.002
Eckroat TJ, Manross DL, Cowan SC. Merged tacrine-based, multitarget-directed acetylcholinesterase inhibitors 2015-present: synthesis and biological activity. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21175965 .
doi: 10.3390/ijms21175965 pubmed: 32825138 pmcid: 7504404
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, et al. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog Neurobiol. 2017;151:4–34.
pubmed: 26797191 doi: 10.1016/j.pneurobio.2015.12.003
Babu A, Joy MN, Sunil K, Sajith AM, Santra S, Zyryanov GV, et al. Towards novel tacrine analogues: Pd(dppf)Cl(2)·CH(2)Cl(2) catalyzed improved synthesis, in silico docking and hepatotoxicity studies. RSC Adv. 2022;12(35):22476–91.
pubmed: 36105950 pmcid: 9366599 doi: 10.1039/D2RA03225B
Arzumanian VA, Kiseleva OI, Poverennaya EV. The curious case of the HepG2 cell line: 40 years of expertise. Int J Mol Sci. 2021;22(23):13135.
pubmed: 34884942 pmcid: 8658661 doi: 10.3390/ijms222313135
Maalej E, Chabchoub F, Oset-Gasque MJ, Esquivias-Pérez M, González MP, Monjas L, et al. Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno[2,3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer’s disease. Eur J Med Chem. 2012;54:750–63.
pubmed: 22795665 doi: 10.1016/j.ejmech.2012.06.038
Devarbhavi H. An update on drug-induced liver injury. J Clin Exp Hepatol. 2012;2(3):247–59.
pubmed: 25755441 pmcid: 3940315 doi: 10.1016/j.jceh.2012.05.002
Bénichou C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol. 1990. https://doi.org/10.1016/0168-8278(90)90124-A .
doi: 10.1016/0168-8278(90)90124-A pubmed: 2254635
Van Biesen W, Vanholder R, Lameire N. Defining acute renal failure: RIFLE and beyond. Clin J Am Soc Nephrol. 2006;1(6):1314–9.
pubmed: 17699363 doi: 10.2215/CJN.02070606
Griffin BR, Faubel S, Edelstein CL. Biomarkers of drug-induced kidney toxicity. Ther Drug Monit. 2019;41(2):213–26.
pubmed: 30883514 pmcid: 6436396 doi: 10.1097/FTD.0000000000000589
Ji Y, Gao Y, Chen H, Yin Y, Zhang W. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress. Nutrients. 2019. https://doi.org/10.3390/nu11092062 .
doi: 10.3390/nu11092062 pubmed: 31905851 pmcid: 7019643
Johra FT, Hossain S, Jain P, Bristy AT, Emran T, Ahmed R, et al. Amelioration of CCl(4)-induced oxidative stress and hepatotoxicity by Ganoderma lucidum in long evans rats. Sci Rep. 2023;13(1):9909.
pubmed: 37336915 pmcid: 10279652 doi: 10.1038/s41598-023-35228-y
Ghonaim AH, Hopo MG, Ismail AK, AboElnaga TR, Elgawish RA, Abdou RH, et al. Hepatoprotective and renoprotective effects of silymarin against salinomycin-induced toxicity in adult rabbits. Veterinary world. 2022;15(9):2244–52.
pubmed: 36341068 pmcid: 9631362 doi: 10.14202/vetworld.2022.2244-2252
Aminabee S, Rao AL, Eswaraiah MC. In vivo antioxidant activity of different fractions of indigofera barberi against paracetamol-induced toxicity in rats. Turkish J Pharmaceutical Sci. 2020;17(2):136–40.
doi: 10.4274/tjps.galenos.2018.30306
Shareef SH, Al-Medhtiy MH, Al Rashdi AS, Aziz PY, Abdulla MA. Hepatoprotective effect of pinostrobin against thioacetamide-induced liver cirrhosis in rats. Saudi J Biol Sci. 2023;30(1): 103506.
pubmed: 36458098 doi: 10.1016/j.sjbs.2022.103506
Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G, et al. Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet Fed ApoE((–/–)) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22020818 .
doi: 10.3390/ijms22020818 pubmed: 33467546 pmcid: 7829901
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.
pubmed: 21801009 doi: 10.1146/annurev-cellbio-092910-154005
Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 2014;55(2):238–52.
pubmed: 24954904 pmcid: 4104028 doi: 10.1016/j.molcel.2014.05.021
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol. 2021;13(1):6–65.
pubmed: 33584986 pmcid: 7856864 doi: 10.4254/wjh.v13.i1.6
Li J, Zeng C, Zheng B, Liu C, Tang M, Jiang Y, et al. HMGB1-induced autophagy facilitates hepatic stellate cells activation: a new pathway in liver fibrosis. Clin Sci. 2018. https://doi.org/10.1042/CS20180177 .
doi: 10.1042/CS20180177
Tao Y, Wang N, Qiu T, Sun X. The role of autophagy and NLRP3 inflammasome in liver fibrosis. Biomed Res Int. 2020;2020:7269150.
pubmed: 32733951 pmcid: 7369671 doi: 10.1155/2020/7269150
Lucantoni F, Martínez-Cerezuela A, Gruevska A, Moragrega ÁB, Víctor VM, Esplugues JV, et al. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet? J Pathol. 2021;254(3):216–28.
pubmed: 33834482 doi: 10.1002/path.5678
Yang W, Liang Z, Wen C, Jiang X, Wang L. Silymarin protects against acute liver injury induced by acetaminophen by downregulating the expression and activity of the CYP2E1 enzyme. Molecules. 2022. https://doi.org/10.3390/molecules27248855 .
doi: 10.3390/molecules27248855 pubmed: 36615527 pmcid: 9890317
Papackova Z, Heczkova M, Dankova H, Sticova E, Lodererova A, Bartonova L, et al. Silymarin prevents acetaminophen-induced hepatotoxicity in mice. PLoS ONE. 2018;13(1): e0191353.
pubmed: 29342206 pmcid: 5771617 doi: 10.1371/journal.pone.0191353
Yadav P, Kumar A, Althagafi I, Nemaysh V, Rai R, Pratap R. The recent development of tetrahydro-quinoline/isoquinoline based compounds as anticancer agents. Curr Top Med Chem. 2021;21(17):1587–622.
pubmed: 34042035 doi: 10.2174/1568026621666210526164208

Auteurs

Mohamed Hussein Abdelgalil (MH)

Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.

Reem H Elhammamy (RH)

Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.

Hanan M Ragab (HM)

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.

Eman Sheta (E)

Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.

Ahmed Wahid (A)

Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt. ahmed.wahid@alexu.edu.eg.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH