Use of Immune Profiling Panel to assess the immune response of septic patients for prediction of worsening as a composite endpoint.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 May 2024
17 May 2024
Historique:
received:
22
12
2023
accepted:
14
05
2024
medline:
18
5
2024
pubmed:
18
5
2024
entrez:
17
5
2024
Statut:
epublish
Résumé
Sepsis induces intense, dynamic and heterogeneous host response modulations. Despite improvement of patient management, the risk of mortality and healthcare-associated infections remains high. Treatments to counterbalance immune response are under evaluation, but effective biomarkers are still lacking to perform patient stratification. The design of the present study was defined to alleviate the limitations of existing literature: we selected patients who survived the initial hyperinflammatory response and are still hospitalized at day 5-7 after ICU admission. Using the Immune Profiling Panel (IPP), a fully automated RT-qPCR multiplex prototype, we optimized a machine learning model combining the IPP gene expression levels for the identification of patients at high risk of worsening, a composite endpoint defined as death or secondary infection, within one week after sampling. This was done on 332 sepsis patients selected from two retrospective studies. The IPP model identified a high-risk group comprising 30% of patients, with a significant increased proportion of worsening events at day 28 compared to the low-risk group (49% vs. 28%, respectively). These preliminary results underline the potential clinical application of IPP for sepsis patient stratification in a personalized medicine perspective, that will be confirmed in a larger prospective multicenter study.
Identifiants
pubmed: 38760488
doi: 10.1038/s41598-024-62202-z
pii: 10.1038/s41598-024-62202-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11305Informations de copyright
© 2024. The Author(s).
Références
Leligdowicz, A. & Matthay, M. A. Heterogeneity in sepsis: New biological evidence with clinical applications. Crit Care 23(1), 80 (2019).
doi: 10.1186/s13054-019-2372-2
pubmed: 30850013
pmcid: 6408778
Schuurman, A. R., Sloot, P. M. A., Wiersinga, W. J. & van der Poll, T. Embracing complexity in sepsis. Crit Care 27(1), 102 (2023).
doi: 10.1186/s13054-023-04374-0
pubmed: 36906606
pmcid: 10007743
Dupuis, C. et al. Sepsis and septic shock in France: Incidences, outcomes and costs of care. Ann. Intensive Care 10(1), 145 (2020).
doi: 10.1186/s13613-020-00760-x
pubmed: 33079281
pmcid: 7575668
Torres, L. K., Pickkers, P. & Van der Poll, T. Sepsis-Induced Immunosuppression. Ann. Rev. Physiol. 84, 157–181. https://doi.org/10.1146/annurev-physiol-061121-040214 (2021).
doi: 10.1146/annurev-physiol-061121-040214
Vught, L. A. V. et al. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA 315(14), 1469–1479 (2016).
doi: 10.1001/jama.2016.2691
pubmed: 26975785
Cavaillon, J. M., Singer, M. & Skirecki, T. Sepsis therapies: Learning from 30 years of failure of translational research to propose new leads. EMBO Mol. Med. 12(4), e10128 (2020).
doi: 10.15252/emmm.201810128
pubmed: 32176432
pmcid: 7136965
Stanski, N. L. & Wong, H. R. Prognostic and predictive enrichment in sepsis. Nat. Rev. Nephrol. 16, 20–31 (2019).
doi: 10.1038/s41581-019-0199-3
pubmed: 31511662
pmcid: 7097452
Marshall, J. C. & Leligdowicz, A. Gaps and opportunities in sepsis translational research. EBioMedicine 86, 104387 (2022).
doi: 10.1016/j.ebiom.2022.104387
pubmed: 36470831
pmcid: 9783171
Zhong, W. et al. elevated PD-1/CD28 ratio rather than PD-1 expression in CD8+ T cells predicts nosocomial infection in sepsis patients: A prospective observational cohort study. Shock 58(2), 111–118 (2022).
doi: 10.1097/SHK.0000000000001967
pubmed: 36166194
pmcid: 9481292
Sweeney, T. E. et al. A community approach to mortality prediction in sepsis via gene expression analysis. Nat. Commun. 9(1), 694 (2018).
doi: 10.1038/s41467-018-03078-2
pubmed: 29449546
pmcid: 5814463
Pregernig, A., Müller, M., Held, U. & Beck-Schimmer, B. Prediction of mortality in adult patients with sepsis using six biomarkers: A systematic review and meta-analysis. Ann. Intensive Care 9(1), 125 (2019).
doi: 10.1186/s13613-019-0600-1
pubmed: 31705327
pmcid: 6841861
Bodinier, M. et al. Identification of a sub-group of critically ill patients with high risk of intensive care unit-acquired infections and poor clinical course using a transcriptomic score. Crit. Care 27(1), 158 (2023).
doi: 10.1186/s13054-023-04436-3
pubmed: 37085849
pmcid: 10119529
Lévy, Y. et al. CD177, a specific marker of neutrophil activation, is associated with coronavirus disease 2019 severity and death. iScience 24(7), 102711 (2021).
doi: 10.1016/j.isci.2021.102711
pubmed: 34127958
pmcid: 8189740
Almansa, R. et al. Transcriptomic correlates of organ failure extent in sepsis. J. Infect. 70(5), 445–456 (2015).
doi: 10.1016/j.jinf.2014.12.010
pubmed: 25557485
Giamarellos-Bourboulis, E. J. et al. The pathophysiology of sepsis and precision-medicine-based immunotherapy. Nat. Immunol. 25(1), 19–28 (2024).
doi: 10.1038/s41590-023-01660-5
pubmed: 38168953
Tawfik, D. M. et al. Immune Profiling Panel: A proof-of-concept study of a new multiplex molecular tool to assess the immune status of critically Ill patients. J. Infect. Dis. 222(Supplement_2), S84-s95 (2020).
doi: 10.1093/infdis/jiaa248
pubmed: 32691839
pmcid: 7372218
Peronnet, E. et al. Immune Profiling Panel gene set identifies critically ill patients with low monocyte human leukocyte antigen-Dr expression: preliminary results from the REAnimation low immune status marker (REALISM) study. Crit. Care Med. 51, 808–816 (2023).
doi: 10.1097/CCM.0000000000005832
pubmed: 36917594
pmcid: 10187625
Friggeri, A. et al. Decreased CX3CR1 messenger RNA expression is an independent molecular biomarker of early and late mortality in critically ill patients. Crit. Care 20(1), 204 (2016).
doi: 10.1186/s13054-016-1362-x
pubmed: 27364780
pmcid: 4929760
Rol, M. L. et al. The REAnimation low immune status markers (REALISM) project: A protocol for broad characterisation and follow-up of injury-induced immunosuppression in intensive care unit (ICU) critically ill patients. BMJ Open 7(6), e015734 (2017).
doi: 10.1136/bmjopen-2016-015734
pubmed: 28637738
pmcid: 5726091
Venet, F. et al. Immune profiling demonstrates a common immune signature of delayed acquired immunodeficiency in patients with various etiologies of severe injury. Crit. Care Med. 50(4), 565–575 (2022).
doi: 10.1097/CCM.0000000000005270
pubmed: 34534131
Suetens, C. et al. European surveillance of ICU-acquired infections (HELICS-ICU): Methods and main results. J. Hosp. Infect. 65(Suppl 2), 171–173 (2007).
doi: 10.1016/S0195-6701(07)60038-3
pubmed: 17540265
Peronnet, E. et al. Immune Profiling Panel gene set identifies critically Ill patients with low monocyte human leukocyte antigen-DR expression: Preliminary results from the REAnimation low immune status marker (REALISM) study. Crit. Care Med. 51(6), 808–816 (2023).
doi: 10.1097/CCM.0000000000005832
pubmed: 36917594
pmcid: 10187625
Peronnet, E. et al. Association between mRNA expression of CD74 and IL10 and risk of ICU-acquired infections: A multicenter cohort study. Intensive Care Med. 43(7), 1013–1020 (2017).
doi: 10.1007/s00134-017-4805-1
pubmed: 28477143
pmcid: 5487586
Poritz, M. A. et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: Development and application to respiratory tract infection. PLoS ONE 6(10), e26047 (2011).
doi: 10.1371/journal.pone.0026047
pubmed: 22039434
pmcid: 3198457
Contentin, L., Ehrmann, S. & Giraudeau, B. Heterogeneity in the definition of mechanical ventilation duration and ventilator-free days. Am. J. Respir. Crit. Care Med. 189(8), 998–1002 (2014).
doi: 10.1164/rccm.201308-1499LE
pubmed: 24735035
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
doi: 10.1613/jair.953
Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8), 801–810 (2016).
doi: 10.1001/jama.2016.0287
pubmed: 26903338
pmcid: 4968574
Shankar-Hari, M., Harrison, D. A. & Rowan, K. M. Differences in impact of definitional elements on mortality precludes international comparisons of sepsis epidemiology—A cohort study illustrating the need for standardized reporting. Crit. Care Med. 44(12), 2223–2230 (2016).
doi: 10.1097/CCM.0000000000001876
pubmed: 27352126
Scherag, A. et al. Genetic factors of the disease course after sepsis: A genome-wide study for 28day mortality. EBioMedicine 12, 239–246 (2016).
doi: 10.1016/j.ebiom.2016.08.043
pubmed: 27639821
pmcid: 5078589
Davenport, E. E. et al. Genomic landscape of the individual host response and outcomes in sepsis: A prospective cohort study. The Lancet. Respir. Med. 4(4), 259–271 (2016).
doi: 10.1016/S2213-2600(16)00046-1
pubmed: 26917434
Scicluna, B. P. et al. Classification of patients with sepsis according to blood genomic endotype: A prospective cohort study. Lancet Respir. Med. 5, 816–826 (2017).
doi: 10.1016/S2213-2600(17)30294-1
pubmed: 28864056
Shankar-Hari, M. et al. Developing a new definition and assessing new clinical criteria for septic shock: For the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8), 775–787 (2016).
doi: 10.1001/jama.2016.0289
pubmed: 26903336
pmcid: 4910392
Pickens, C. I. et al. An adjudication protocol for severe pneumonia. Open Forum. Infect. Dis. 10(7), ofad336 (2023).
doi: 10.1093/ofid/ofad336
pubmed: 37520413
pmcid: 10372865
Textoris, J. et al. An evaluation of the role of gene expression in the prediction and diagnosis of ventilator-associated pneumonia. Anesthesiology 115(2), 344–352 (2011).
doi: 10.1097/ALN.0b013e318225ba26
pubmed: 21796056
Almansa, R. et al. Transcriptomic depression of immunological synapse as a signature of ventilator-associated pneumonia. Ann. Transl. Med. 6(21), 415 (2018).
doi: 10.21037/atm.2018.05.12
pubmed: 30581823
pmcid: 6275407
Januel, J. M. et al. Estimating attributable mortality due to nosocomial infections acquired in intensive care units. Infect. Control Hosp. Epidemiol. 31(4), 388–394 (2010).
doi: 10.1086/650754
pubmed: 20156064