Use of Immune Profiling Panel to assess the immune response of septic patients for prediction of worsening as a composite endpoint.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
17 May 2024
Historique:
received: 22 12 2023
accepted: 14 05 2024
medline: 18 5 2024
pubmed: 18 5 2024
entrez: 17 5 2024
Statut: epublish

Résumé

Sepsis induces intense, dynamic and heterogeneous host response modulations. Despite improvement of patient management, the risk of mortality and healthcare-associated infections remains high. Treatments to counterbalance immune response are under evaluation, but effective biomarkers are still lacking to perform patient stratification. The design of the present study was defined to alleviate the limitations of existing literature: we selected patients who survived the initial hyperinflammatory response and are still hospitalized at day 5-7 after ICU admission. Using the Immune Profiling Panel (IPP), a fully automated RT-qPCR multiplex prototype, we optimized a machine learning model combining the IPP gene expression levels for the identification of patients at high risk of worsening, a composite endpoint defined as death or secondary infection, within one week after sampling. This was done on 332 sepsis patients selected from two retrospective studies. The IPP model identified a high-risk group comprising 30% of patients, with a significant increased proportion of worsening events at day 28 compared to the low-risk group (49% vs. 28%, respectively). These preliminary results underline the potential clinical application of IPP for sepsis patient stratification in a personalized medicine perspective, that will be confirmed in a larger prospective multicenter study.

Identifiants

pubmed: 38760488
doi: 10.1038/s41598-024-62202-z
pii: 10.1038/s41598-024-62202-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11305

Informations de copyright

© 2024. The Author(s).

Références

Leligdowicz, A. & Matthay, M. A. Heterogeneity in sepsis: New biological evidence with clinical applications. Crit Care 23(1), 80 (2019).
doi: 10.1186/s13054-019-2372-2 pubmed: 30850013 pmcid: 6408778
Schuurman, A. R., Sloot, P. M. A., Wiersinga, W. J. & van der Poll, T. Embracing complexity in sepsis. Crit Care 27(1), 102 (2023).
doi: 10.1186/s13054-023-04374-0 pubmed: 36906606 pmcid: 10007743
Dupuis, C. et al. Sepsis and septic shock in France: Incidences, outcomes and costs of care. Ann. Intensive Care 10(1), 145 (2020).
doi: 10.1186/s13613-020-00760-x pubmed: 33079281 pmcid: 7575668
Torres, L. K., Pickkers, P. & Van der Poll, T. Sepsis-Induced Immunosuppression. Ann. Rev. Physiol. 84, 157–181. https://doi.org/10.1146/annurev-physiol-061121-040214 (2021).
doi: 10.1146/annurev-physiol-061121-040214
Vught, L. A. V. et al. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA 315(14), 1469–1479 (2016).
doi: 10.1001/jama.2016.2691 pubmed: 26975785
Cavaillon, J. M., Singer, M. & Skirecki, T. Sepsis therapies: Learning from 30 years of failure of translational research to propose new leads. EMBO Mol. Med. 12(4), e10128 (2020).
doi: 10.15252/emmm.201810128 pubmed: 32176432 pmcid: 7136965
Stanski, N. L. & Wong, H. R. Prognostic and predictive enrichment in sepsis. Nat. Rev. Nephrol. 16, 20–31 (2019).
doi: 10.1038/s41581-019-0199-3 pubmed: 31511662 pmcid: 7097452
Marshall, J. C. & Leligdowicz, A. Gaps and opportunities in sepsis translational research. EBioMedicine 86, 104387 (2022).
doi: 10.1016/j.ebiom.2022.104387 pubmed: 36470831 pmcid: 9783171
Zhong, W. et al. elevated PD-1/CD28 ratio rather than PD-1 expression in CD8+ T cells predicts nosocomial infection in sepsis patients: A prospective observational cohort study. Shock 58(2), 111–118 (2022).
doi: 10.1097/SHK.0000000000001967 pubmed: 36166194 pmcid: 9481292
Sweeney, T. E. et al. A community approach to mortality prediction in sepsis via gene expression analysis. Nat. Commun. 9(1), 694 (2018).
doi: 10.1038/s41467-018-03078-2 pubmed: 29449546 pmcid: 5814463
Pregernig, A., Müller, M., Held, U. & Beck-Schimmer, B. Prediction of mortality in adult patients with sepsis using six biomarkers: A systematic review and meta-analysis. Ann. Intensive Care 9(1), 125 (2019).
doi: 10.1186/s13613-019-0600-1 pubmed: 31705327 pmcid: 6841861
Bodinier, M. et al. Identification of a sub-group of critically ill patients with high risk of intensive care unit-acquired infections and poor clinical course using a transcriptomic score. Crit. Care 27(1), 158 (2023).
doi: 10.1186/s13054-023-04436-3 pubmed: 37085849 pmcid: 10119529
Lévy, Y. et al. CD177, a specific marker of neutrophil activation, is associated with coronavirus disease 2019 severity and death. iScience 24(7), 102711 (2021).
doi: 10.1016/j.isci.2021.102711 pubmed: 34127958 pmcid: 8189740
Almansa, R. et al. Transcriptomic correlates of organ failure extent in sepsis. J. Infect. 70(5), 445–456 (2015).
doi: 10.1016/j.jinf.2014.12.010 pubmed: 25557485
Giamarellos-Bourboulis, E. J. et al. The pathophysiology of sepsis and precision-medicine-based immunotherapy. Nat. Immunol. 25(1), 19–28 (2024).
doi: 10.1038/s41590-023-01660-5 pubmed: 38168953
Tawfik, D. M. et al. Immune Profiling Panel: A proof-of-concept study of a new multiplex molecular tool to assess the immune status of critically Ill patients. J. Infect. Dis. 222(Supplement_2), S84-s95 (2020).
doi: 10.1093/infdis/jiaa248 pubmed: 32691839 pmcid: 7372218
Peronnet, E. et al. Immune Profiling Panel gene set identifies critically ill patients with low monocyte human leukocyte antigen-Dr expression: preliminary results from the REAnimation low immune status marker (REALISM) study. Crit. Care Med. 51, 808–816 (2023).
doi: 10.1097/CCM.0000000000005832 pubmed: 36917594 pmcid: 10187625
Friggeri, A. et al. Decreased CX3CR1 messenger RNA expression is an independent molecular biomarker of early and late mortality in critically ill patients. Crit. Care 20(1), 204 (2016).
doi: 10.1186/s13054-016-1362-x pubmed: 27364780 pmcid: 4929760
Rol, M. L. et al. The REAnimation low immune status markers (REALISM) project: A protocol for broad characterisation and follow-up of injury-induced immunosuppression in intensive care unit (ICU) critically ill patients. BMJ Open 7(6), e015734 (2017).
doi: 10.1136/bmjopen-2016-015734 pubmed: 28637738 pmcid: 5726091
Venet, F. et al. Immune profiling demonstrates a common immune signature of delayed acquired immunodeficiency in patients with various etiologies of severe injury. Crit. Care Med. 50(4), 565–575 (2022).
doi: 10.1097/CCM.0000000000005270 pubmed: 34534131
Suetens, C. et al. European surveillance of ICU-acquired infections (HELICS-ICU): Methods and main results. J. Hosp. Infect. 65(Suppl 2), 171–173 (2007).
doi: 10.1016/S0195-6701(07)60038-3 pubmed: 17540265
Peronnet, E. et al. Immune Profiling Panel gene set identifies critically Ill patients with low monocyte human leukocyte antigen-DR expression: Preliminary results from the REAnimation low immune status marker (REALISM) study. Crit. Care Med. 51(6), 808–816 (2023).
doi: 10.1097/CCM.0000000000005832 pubmed: 36917594 pmcid: 10187625
Peronnet, E. et al. Association between mRNA expression of CD74 and IL10 and risk of ICU-acquired infections: A multicenter cohort study. Intensive Care Med. 43(7), 1013–1020 (2017).
doi: 10.1007/s00134-017-4805-1 pubmed: 28477143 pmcid: 5487586
Poritz, M. A. et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: Development and application to respiratory tract infection. PLoS ONE 6(10), e26047 (2011).
doi: 10.1371/journal.pone.0026047 pubmed: 22039434 pmcid: 3198457
Contentin, L., Ehrmann, S. & Giraudeau, B. Heterogeneity in the definition of mechanical ventilation duration and ventilator-free days. Am. J. Respir. Crit. Care Med. 189(8), 998–1002 (2014).
doi: 10.1164/rccm.201308-1499LE pubmed: 24735035
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
doi: 10.1613/jair.953
Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8), 801–810 (2016).
doi: 10.1001/jama.2016.0287 pubmed: 26903338 pmcid: 4968574
Shankar-Hari, M., Harrison, D. A. & Rowan, K. M. Differences in impact of definitional elements on mortality precludes international comparisons of sepsis epidemiology—A cohort study illustrating the need for standardized reporting. Crit. Care Med. 44(12), 2223–2230 (2016).
doi: 10.1097/CCM.0000000000001876 pubmed: 27352126
Scherag, A. et al. Genetic factors of the disease course after sepsis: A genome-wide study for 28day mortality. EBioMedicine 12, 239–246 (2016).
doi: 10.1016/j.ebiom.2016.08.043 pubmed: 27639821 pmcid: 5078589
Davenport, E. E. et al. Genomic landscape of the individual host response and outcomes in sepsis: A prospective cohort study. The Lancet. Respir. Med. 4(4), 259–271 (2016).
doi: 10.1016/S2213-2600(16)00046-1 pubmed: 26917434
Scicluna, B. P. et al. Classification of patients with sepsis according to blood genomic endotype: A prospective cohort study. Lancet Respir. Med. 5, 816–826 (2017).
doi: 10.1016/S2213-2600(17)30294-1 pubmed: 28864056
Shankar-Hari, M. et al. Developing a new definition and assessing new clinical criteria for septic shock: For the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8), 775–787 (2016).
doi: 10.1001/jama.2016.0289 pubmed: 26903336 pmcid: 4910392
Pickens, C. I. et al. An adjudication protocol for severe pneumonia. Open Forum. Infect. Dis. 10(7), ofad336 (2023).
doi: 10.1093/ofid/ofad336 pubmed: 37520413 pmcid: 10372865
Textoris, J. et al. An evaluation of the role of gene expression in the prediction and diagnosis of ventilator-associated pneumonia. Anesthesiology 115(2), 344–352 (2011).
doi: 10.1097/ALN.0b013e318225ba26 pubmed: 21796056
Almansa, R. et al. Transcriptomic depression of immunological synapse as a signature of ventilator-associated pneumonia. Ann. Transl. Med. 6(21), 415 (2018).
doi: 10.21037/atm.2018.05.12 pubmed: 30581823 pmcid: 6275407
Januel, J. M. et al. Estimating attributable mortality due to nosocomial infections acquired in intensive care units. Infect. Control Hosp. Epidemiol. 31(4), 388–394 (2010).
doi: 10.1086/650754 pubmed: 20156064

Auteurs

Estelle Peronnet (E)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France. estelle.peronnet@biomerieux.com.
Open Innovation and Partnerships (OI&P), bioMérieux S.A., Marcy-l'Etoile, France. estelle.peronnet@biomerieux.com.

Gabriel Terraz (G)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
EFOR, Champagne-au-Mont-d'Or, France.

Elisabeth Cerrato (E)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
Open Innovation and Partnerships (OI&P), bioMérieux S.A., Marcy-l'Etoile, France.

Katia Imhoff (K)

Data Science, bioMérieux S.A., Marcy l'Etoile, France.

Sophie Blein (S)

Data Science, bioMérieux S.A., Marcy l'Etoile, France.

Karen Brengel-Pesce (K)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
Open Innovation and Partnerships (OI&P), bioMérieux S.A., Marcy-l'Etoile, France.

Maxime Bodinier (M)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
Open Innovation and Partnerships (OI&P), bioMérieux S.A., Marcy-l'Etoile, France.

Aurore Fleurie (A)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
Open Innovation and Partnerships (OI&P), bioMérieux S.A., Marcy-l'Etoile, France.

Thomas Rimmelé (T)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
Anaesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.

Anne-Claire Lukaszewicz (AC)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
Anaesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.

Guillaume Monneret (G)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
Immunology Laboratory, Edouard Herriot Hospital - Hospices Civils de Lyon, Lyon, France.

Jean-François Llitjos (JF)

Joint Research Unit HCL-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, bioMérieux), Lyon, France.
Open Innovation and Partnerships (OI&P), bioMérieux S.A., Marcy-l'Etoile, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH