Precision management of acute kidney injury in the intensive care unit: current state of the art.
Acute kidney injury
Biomarker
Endotype
Enrichment
Phenotype
Precision
Prognosis
Journal
Intensive care medicine
ISSN: 1432-1238
Titre abrégé: Intensive Care Med
Pays: United States
ID NLM: 7704851
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
19
04
2023
accepted:
12
07
2023
medline:
14
9
2023
pubmed:
8
8
2023
entrez:
8
8
2023
Statut:
ppublish
Résumé
Acute kidney injury (AKI) is a prototypical example of a common syndrome in critical illness defined by consensus. The consensus definition for AKI, traditionally defined using only serum creatinine and urine output, was needed to standardize the description for epidemiology and to harmonize eligibility for clinical trials. However, AKI is not a simple disease, but rather a complex and multi-factorial syndrome characterized by a wide spectrum of pathobiology. AKI is now recognized to be comprised of numerous sub-phenotypes that can be discriminated through shared features such as etiology, prognosis, or common pathobiological mechanisms of injury and damage. The characterization of sub-phenotypes can serve to enable prognostic enrichment (i.e., identify subsets of patients more likely to share an outcome of interest) and predictive enrichment (identify subsets of patients more likely to respond favorably to a given therapy). Existing and emerging biomarkers will aid in discriminating sub-phenotypes of AKI, facilitate expansion of diagnostic criteria, and be leveraged to realize personalized approaches to management, particularly for recognizing treatment-responsive mechanisms (i.e., endotypes) and targets for intervention (i.e., treatable traits). Specific biomarkers (e.g., serum renin; olfactomedin 4 (OLFM4); interleukin (IL)-9) may further enable identification of pathobiological mechanisms to serve as treatment targets. However, even non-specific biomarkers of kidney injury (e.g., neutrophil gelatinase-associated lipocalin, NGAL; [tissue inhibitor of metalloproteinases 2, TIMP2]·[insulin like growth factor binding protein 7, IGFBP7]; kidney injury molecule 1, KIM-1) can direct greater precision management for specific sub-phenotypes of AKI. This review will summarize these evolving concepts and recent innovations in precision medicine approaches to the syndrome of AKI in critical illness, along with providing examples of how they can be leveraged to guide patient care.
Identifiants
pubmed: 37552332
doi: 10.1007/s00134-023-07171-z
pii: 10.1007/s00134-023-07171-z
doi:
Substances chimiques
Biomarkers
0
Lipocalin-2
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1049-1061Informations de copyright
© 2023. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Zarbock A, Nadim MK, Pickkers P, Gomez H, Bell S, Joannidis M, Kashani K, Koyner JL, Pannu N, Meersch M et al (2023) Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol 19:401–417
pubmed: 36823168
doi: 10.1038/s41581-023-00683-3
Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L et al (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38(10):1573–1582
pubmed: 22926653
doi: 10.1007/s00134-012-2682-1
Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23):2526–2533
Disease K (2012) Improving Global Outcomes: KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney Int 2:1–138
Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, Berry S, Clermont G, Cooper G, Gomez H et al (2019) Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 321(20):2003–2017
pubmed: 31104070
pmcid: 6537818
doi: 10.1001/jama.2019.5791
Marshall JC (2014) Why have clinical trials in sepsis failed? Trends Mol Med 20(4):195–203
pubmed: 24581450
doi: 10.1016/j.molmed.2014.01.007
Maslove DM, Tang B, Shankar-Hari M, Lawler PR, Angus DC, Baillie JK, Baron RM, Bauer M, Buchman TG, Calfee CS et al (2022) Redefining critical illness. Nat Med 28(6):1141–1148
pubmed: 35715504
doi: 10.1038/s41591-022-01843-x
Reddy K, Sinha P, O’Kane CM, Gordon AC, Calfee CS, McAuley DF (2020) Subphenotypes in critical care: translation into clinical practice. Lancet Respir Med 8(6):631–643
pubmed: 32526190
doi: 10.1016/S2213-2600(20)30124-7
Vaara ST, Bhatraju PK, Stanski NL, McMahon BA, Liu K, Joannidis M, Bagshaw SM (2022) Subphenotypes in acute kidney injury: a narrative review. Crit Care 26(1):251
pubmed: 35986336
pmcid: 9389711
doi: 10.1186/s13054-022-04121-x
Krewulak KD, Stelfox HT, Ely EW, Fiest KM (2020) Risk factors and outcomes among delirium subtypes in adult ICUs: A systematic review. J Crit Care 56:257–264
pubmed: 31986369
doi: 10.1016/j.jcrc.2020.01.017
Neyton LPA, Zheng X, Skouras C, Doeschl-Wilson A, Gutmann MU, Uings I, Rao FV, Nicolas A, Marshall C, Wilson LM et al (2022) Molecular Patterns in Acute Pancreatitis Reflect Generalizable Endotypes of the Host Response to Systemic Injury in Humans. Ann Surg 275(2):e453–e462
pubmed: 32487804
doi: 10.1097/SLA.0000000000003974
Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, Network NA (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2(8):611–620
pubmed: 24853585
pmcid: 4154544
doi: 10.1016/S2213-2600(14)70097-9
Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, McDowell C, Laffey JG, O’Kane CM, McAuley DF et al (2018) Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 6(9):691–698
pubmed: 30078618
pmcid: 6201750
doi: 10.1016/S2213-2600(18)30177-2
Rodrigues CE, Endre ZH (2023) Definitions, phenotypes, and subphenotypes in acute kidney injury-Moving towards precision medicine. Nephrology (Carlton) 28(2):83–96
pubmed: 36370326
doi: 10.1111/nep.14132
de Caestecker M, Humphreys BD, Liu KD, Fissell WH, Cerda J, Nolin TD, Askenazi D, Mour G, Harrell FE Jr, Pullen N et al (2015) Bridging Translation by Improving Preclinical Study Design in AKI. J Am Soc Nephrol 26(12):2905–2916
pubmed: 26538634
pmcid: 4657852
doi: 10.1681/ASN.2015070832
Liu KD, Humphreys BD, Endre ZH (2017) The ten barriers for translation of animal data on AKI to the clinical setting. Intensive Care Med 43(6):898–900
pubmed: 28451772
pmcid: 5515621
doi: 10.1007/s00134-017-4810-4
Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, Bell M, Forni L, Guzzi L, Joannidis M et al (2020) Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw Open 3(10):e2019209
pubmed: 33021646
doi: 10.1001/jamanetworkopen.2020.19209
Juncos LA, Wieruszewski PM, Kashani K (2022) Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. Compr Physiol 12(4):3767–3780
pubmed: 36073750
doi: 10.1002/cphy.c210028
Pickkers P, Darmon M, Hoste E, Joannidis M, Legrand M, Ostermann M, Prowle JR, Schneider A, Schetz M (2021) Acute kidney injury in the critically ill: an updated review on pathophysiology and management. Intensive Care Med 47(8):835–850
pubmed: 34213593
pmcid: 8249842
doi: 10.1007/s00134-021-06454-7
Zuk A, Bonventre JV (2016) Acute Kidney Injury. Annu Rev Med 67:293–307
pubmed: 26768243
pmcid: 4845743
doi: 10.1146/annurev-med-050214-013407
Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281(5):F887-899
pubmed: 11592947
doi: 10.1152/ajprenal.00050.2001
Funk JA, Schnellmann RG (2012) Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Renal Physiol 302(7):F853-864
pubmed: 22160772
doi: 10.1152/ajprenal.00035.2011
Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z (2012) Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82(12):1271–1283
pubmed: 22854643
pmcid: 3491167
doi: 10.1038/ki.2012.261
Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22(2):317–326
pubmed: 21289217
pmcid: 3029904
doi: 10.1681/ASN.2009060615
Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16(5):535–543
pubmed: 20436483
pmcid: 3928013
doi: 10.1038/nm.2144
Nejat M, Pickering JW, Walker RJ, Westhuyzen J, Shaw GM, Frampton CM, Endre ZH (2010) Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care 14(3):R85
pubmed: 20459852
pmcid: 2911717
doi: 10.1186/cc9014
Khorashadi M, Beunders R, Pickkers P, Legrand M (2020) Proenkephalin: A New Biomarker for Glomerular Filtration Rate and Acute Kidney Injury. Nephron 144(12):655–661
pubmed: 32739920
doi: 10.1159/000509352
Andrew BY, Pieper CF, Cherry AD, Pendergast JF, Privratsky JR, Mathew JP, Stafford-Smith M (2022) Identification of Trajectory-Based Acute Kidney Injury Phenotypes Among Cardiac Surgery Patients. Ann Thorac Surg 114(6):2235–2243
pubmed: 34968444
doi: 10.1016/j.athoracsur.2021.11.047
Bhatraju PK, Mukherjee P, Robinson-Cohen C, O’Keefe GE, Frank AJ, Christie JD, Meyer NJ, Liu KD, Matthay MA, Calfee CS et al (2016) Acute kidney injury subphenotypes based on creatinine trajectory identifies patients at increased risk of death. Crit Care 20(1):372
pubmed: 27852290
pmcid: 5112626
doi: 10.1186/s13054-016-1546-4
Smith TD, Soriano VO, Neyra JA, Chen J (2019) Identifying KDIGO trajectory phenotypes associated with increased inpatient mortality. IEEE Int Conf Healthc Inform. https://doi.org/10.1109/ichi.2019.8904739
doi: 10.1109/ichi.2019.8904739
pubmed: 32844151
pmcid: 7444813
Pickkers P, Mehta RL, Murray PT, Joannidis M, Molitoris BA, Kellum JA, Bachler M, Hoste EAJ, Hoiting O, Krell K et al (2018) Effect of Human Recombinant Alkaline Phosphatase on 7-Day Creatinine Clearance in Patients With Sepsis-Associated Acute Kidney Injury: A Randomized Clinical Trial. JAMA 320(19):1998–2009
pubmed: 30357272
pmcid: 6248164
doi: 10.1001/jama.2018.14283
Xu K, Rosenstiel P, Paragas N, Hinze C, Gao X, Huai Shen T, Werth M, Forster C, Deng R, Bruck E et al (2017) Unique Transcriptional Programs Identify Subtypes of AKI. J Am Soc Nephrol 28(6):1729–1740
pubmed: 28028135
doi: 10.1681/ASN.2016090974
Endre ZH, Kellum JA, Di Somma S, Doi K, Goldstein SL, Koyner JL, Macedo E, Mehta RL, Murray PT (2013) Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:30–44
pubmed: 23689654
doi: 10.1159/000349964
Gocze I, Jauch D, Gotz M, Kennedy P, Jung B, Zeman F, Gnewuch C, Graf BM, Gnann W, Banas B et al (2018) Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery: The Prospective Randomized BigpAK Study. Ann Surg 267(6):1013–1020
pubmed: 28857811
doi: 10.1097/SLA.0000000000002485
Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, Zarbock A (2017) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 43(11):1551–1561
pubmed: 28110412
pmcid: 5633630
doi: 10.1007/s00134-016-4670-3
Johnson ACM, Zager RA (2018) Mechanisms Underlying Increased TIMP2 and IGFBP7 Urinary Excretion in Experimental AKI. J Am Soc Nephrol 29(8):2157–2167
pubmed: 29980651
pmcid: 6065093
doi: 10.1681/ASN.2018030265
Kellum JA, Sileanu FE, Bihorac A, Hoste EA, Chawla LS (2017) Recovery after Acute Kidney Injury. Am J Respir Crit Care Med 195(6):784–791
pubmed: 27635668
pmcid: 5363967
doi: 10.1164/rccm.201604-0799OC
Delucchi K, Famous KR, Ware LB, Parsons PE, Thompson BT, Calfee CS, Network A (2018) Stability of ARDS subphenotypes over time in two randomised controlled trials. Thorax 73(5):439–445
pubmed: 29477989
doi: 10.1136/thoraxjnl-2017-211090
Maddali MV, Churpek M, Pham T, Rezoagli E, Zhuo H, Zhao W, He J, Delucchi KL, Wang C, Wickersham N et al (2022) Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis. Lancet Respir Med 10(4):367–377
pubmed: 35026177
pmcid: 8976729
doi: 10.1016/S2213-2600(21)00461-6
Sanchez-Pinto LN, Stroup EK, Pendergrast T, Pinto N, Luo Y (2020) Derivation and Validation of Novel Phenotypes of Multiple Organ Dysfunction Syndrome in Critically Ill Children. JAMA Netw Open 3(8):e209271
pubmed: 32780121
pmcid: 7420303
doi: 10.1001/jamanetworkopen.2020.9271
Chaudhary K, Vaid A, Duffy A, Paranjpe I, Jaladanki S, Paranjpe M, Johnson K, Gokhale A, Pattharanitima P, Chauhan K et al (2020) Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury. Clin J Am Soc Nephrol 15(11):1557–1565
pubmed: 33033164
pmcid: 7646246
doi: 10.2215/CJN.09330819
Bhatraju PK, Zelnick LR, Herting J, Katz R, Mikacenic C, Kosamo S, Morrell ED, Robinson-Cohen C, Calfee CS, Christie JD et al (2019) Identification of Acute Kidney Injury Subphenotypes with Differing Molecular Signatures and Responses to Vasopressin Therapy. Am J Respir Crit Care Med 199(7):863–872
pubmed: 30334632
pmcid: 6444649
doi: 10.1164/rccm.201807-1346OC
Wiersema R, Jukarainen S, Vaara ST, Poukkanen M, Lakkisto P, Wong H, Linder A, van der Horst ICC, Pettila V (2020) Two subphenotypes of septic acute kidney injury are associated with different 90-day mortality and renal recovery. Crit Care 24(1):150
pubmed: 32295614
pmcid: 7161019
doi: 10.1186/s13054-020-02866-x
Bhatraju PK, Cohen M, Nagao RJ, Morrell ED, Kosamo S, Chai XY, Nance R, Dmyterko V, Delaney J, Christie JD et al (2020) Genetic variation implicates plasma angiopoietin-2 in the development of acute kidney injury sub-phenotypes. BMC Nephrol 21(1):284
pubmed: 32680471
pmcid: 7368773
doi: 10.1186/s12882-020-01935-1
Vasquez-Rios G, Oh W, Lee S, Bhatraju P, Mansour SG, Moledina DG, Gulamali FF, Siew ED, Garg AX, Sarder P et al (2023) Joint modeling of clinical and biomarker data in acute kidney injury defines unique subphenotypes with differing outcomes: The ASSESS-AKI Study. Clin J Am Soc Nephrol 18(6):716–726
pubmed: 36975209
doi: 10.2215/CJN.0000000000000156
Zador Z, Landry A, Cusimano MD, Geifman N (2019) Multimorbidity states associated with higher mortality rates in organ dysfunction and sepsis: a data-driven analysis in critical care. Crit Care 23(1):247
pubmed: 31287020
pmcid: 6613271
doi: 10.1186/s13054-019-2486-6
Fiorentino M, Xu Z, Smith A, Singbartl K, Palevsky PM, Chawla LS, Huang DT, Yealy DM, Angus DC, Kellum JA et al (2020) Serial Measurement of Cell-Cycle Arrest Biomarkers [TIMP-2]. [IGFBP7] and Risk for Progression to Death, Dialysis, or Severe Acute Kidney Injury in Patients with Septic Shock. Am J Respir Crit Care Med 202(9):1262–1270
pubmed: 32584598
pmcid: 7605192
doi: 10.1164/rccm.201906-1197OC
Goldstein SL, Akcan-Arikan A, Alobaidi R, Askenazi DJ, Bagshaw SM, Barhight M, Barreto E, Bayrakci B, Bignall ONR, Bjornstad E et al (2022) Consensus-Based Recommendations on Priority Activities to Address Acute Kidney Injury in Children: A Modified Delphi Consensus Statement. JAMA Netw Open 5(9):e2229442
pubmed: 36178697
pmcid: 9756303
doi: 10.1001/jamanetworkopen.2022.29442
Hukriede NA, Soranno DE, Sander V, Perreau T, Starr MC, Yuen PST, Siskind LJ, Hutchens MP, Davidson AJ, Burmeister DM et al (2022) Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 18(5):277–293
pubmed: 35173348
doi: 10.1038/s41581-022-00539-2
Wong HR, Sweeney TE, Hart KW, Khatri P, Lindsell CJ (2017) Pediatric Sepsis Endotypes Among Adults With Sepsis. Crit Care Med 45(12):e1289–e1291
pubmed: 28991828
pmcid: 5693699
doi: 10.1097/CCM.0000000000002733
Stanski NL, Stenson EK, Cvijanovich NZ, Weiss SL, Fitzgerald JC, Bigham MT, Jain PN, Schwarz A, Lutfi R, Nowak J et al (2020) PERSEVERE Biomarkers Predict Severe Acute Kidney Injury and Renal Recovery in Pediatric Septic Shock. Am J Respir Crit Care Med 201(7):848–855
pubmed: 31916857
pmcid: 7124707
doi: 10.1164/rccm.201911-2187OC
Francoz C, Nadim MK, Durand F (2016) Kidney biomarkers in cirrhosis. J Hepatol 65(4):809–824
pubmed: 27238754
doi: 10.1016/j.jhep.2016.05.025
Horiuchi Y, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, Hogan C, Kontos MC, Cannon CM, Mueller GA et al (2022) Decongestion, kidney injury and prognosis in patients with acute heart failure. Int J Cardiol 354:29–37
pubmed: 35202737
doi: 10.1016/j.ijcard.2022.02.026
Zarbock A, Kullmar M, Ostermann M, Lucchese G, Baig K, Cennamo A, Rajani R, McCorkell S, Arndt C, Wulf H et al (2021) Prevention of Cardiac Surgery-Associated Acute Kidney Injury by Implementing the KDIGO Guidelines in High-Risk Patients Identified by Biomarkers: The PrevAKI-Multicenter Randomized Controlled Trial. Anesth Analg 133(2):292–302
pubmed: 33684086
doi: 10.1213/ANE.0000000000005458
Bhatraju PK, Robinson-Cohen C, Mikacenic C, Harju-Baker S, Dmyterko V, Slivinski NSJ, Liles WC, Himmelfarb J, Heckbert SR, Wurfel MM (2017) Circulating levels of soluble Fas (sCD95) are associated with risk for development of a nonresolving acute kidney injury subphenotype. Crit Care 21(1):217
pubmed: 28814331
pmcid: 5559814
doi: 10.1186/s13054-017-1807-x
Lazzareschi D, Mehta RL, Dember LM, Bernholz J, Turan A, Sharma A, Kheterpal S, Parikh CR, Ali O, Schulman IH et al (2022) Overcoming barriers in the design and implementation of clinical trials for Acute Kidney Injury: a report from the 2020 Kidney Disease Clinical Trialists meeting. Nephrol Dial Transplant 38(4):834–844
pmcid: 10064977
doi: 10.1093/ndt/gfac003
Engelman DT, Crisafi C, Germain M, Greco B, Nathanson BH, Engelman RM, Schwann TA (2020) Using urinary biomarkers to reduce acute kidney injury following cardiac surgery. J Thorac Cardiovasc Surg 160(5):1235–1246
pubmed: 31757451
doi: 10.1016/j.jtcvs.2019.10.034
Angeli P, Garcia-Tsao G, Nadim MK, Parikh CR (2019) News in pathophysiology, definition and classification of hepatorenal syndrome: A step beyond the International Club of Ascites (ICA) consensus document. J Hepatol 71(4):811–822
pubmed: 31302175
doi: 10.1016/j.jhep.2019.07.002
Allegretti AS, Parada XV, Endres P, Zhao S, Krinsky S, St Hillien SA, Kalim S, Nigwekar SU, Flood JG, Nixon A et al (2021) Urinary NGAL as a Diagnostic and Prognostic Marker for Acute Kidney Injury in Cirrhosis: A Prospective Study. Clin Transl Gastroenterol 12(5):e00359
pubmed: 33979307
pmcid: 8116001
doi: 10.14309/ctg.0000000000000359
Huelin P, Sola E, Elia C, Sole C, Risso A, Moreira R, Carol M, Fabrellas N, Bassegoda O, Juanola A et al (2019) Neutrophil Gelatinase-Associated Lipocalin for Assessment of Acute Kidney Injury in Cirrhosis: A Prospective Study. Hepatology 70(1):319–333
pubmed: 30810244
doi: 10.1002/hep.30592
Ro X, C H, DF B (2016) Urinary NGAL biomarker predicts non response to therapy with albumin and terlipressin in patients with hepatorenal syndrome. Hepatology 64(Suppl 1):1035A
Gambino C, Piano S, Stenico M, Tonon M, Brocca A, Calvino V, Incicco S, Zeni N, Gagliardi R, Cosma C et al (2023) Diagnostic and prognostic performance of urinary neutrophil gelatinase-associated lipocalin in patients with cirrhosis and acute kidney injury. Hepatology 77(5):1630–1638
pubmed: 36125403
doi: 10.1002/hep.32799
Fudim M, Loungani R, Doerfler SM, Coles A, Greene SJ, Cooper LB, Fiuzat M, O’Connor CM, Rogers JG, Mentz RJ (2018) Worsening renal function during decongestion among patients hospitalized for heart failure: Findings from the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial. Am Heart J 204:163–173
pubmed: 30121018
doi: 10.1016/j.ahj.2018.07.019
Ahmad T, Jackson K, Rao VS, Tang WHW, Brisco-Bacik MA, Chen HH, Felker GM, Hernandez AF, O’Connor CM, Sabbisetti VS et al (2018) Worsening Renal Function in Patients With Acute Heart Failure Undergoing Aggressive Diuresis Is Not Associated With Tubular Injury. Circulation 137(19):2016–2028
pubmed: 29352071
pmcid: 6066176
doi: 10.1161/CIRCULATIONAHA.117.030112
Brisco MA, Zile MR, Hanberg JS, Wilson FP, Parikh CR, Coca SG, Tang WH, Testani JM (2016) Relevance of Changes in Serum Creatinine During a Heart Failure Trial of Decongestive Strategies: Insights From the DOSE Trial. J Card Fail 22(10):753–760
pubmed: 27374839
pmcid: 5435117
doi: 10.1016/j.cardfail.2016.06.423
Mullens W, Damman K, Testani JM, Martens P, Mueller C, Lassus J, Tang WHW, Skouri H, Verbrugge FH, Orso F et al (2020) Evaluation of kidney function throughout the heart failure trajectory - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 22(4):584–603
pubmed: 31908120
doi: 10.1002/ejhf.1697
Shrivastava A, Haase T, Zeller T, Schulte C (2020) Biomarkers for Heart Failure Prognosis: Proteins, Genetic Scores and Non-coding RNAs. Front Cardiovasc Med 7:601364
pubmed: 33330662
pmcid: 7719677
doi: 10.3389/fcvm.2020.601364
Bellomo R, Forni LG, Busse LW, McCurdy MT, Ham KR, Boldt DW, Hastbacka J, Khanna AK, Albertson TE, Tumlin J et al (2020) Renin and Survival in Patients Given Angiotensin II for Catecholamine-Resistant Vasodilatory Shock A Clinical Trial. Am J Respir Crit Care Med 202(9):1253–1261
pubmed: 32609011
pmcid: 7605187
doi: 10.1164/rccm.201911-2172OC
Tumlin JA, Murugan R, Deane AM, Ostermann M, Busse LW, Ham KR, Kashani K, Szerlip HM, Prowle JR, Bihorac A et al (2018) Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit Care Med 46(6):949–957
pubmed: 29509568
pmcid: 5959265
doi: 10.1097/CCM.0000000000003092
Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM et al (2008) Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 358(9):877–887
pubmed: 18305265
doi: 10.1056/NEJMoa067373
Moledina DG, Eadon MT, Calderon F, Yamamoto Y, Shaw M, Perazella MA, Simonov M, Luciano R, Schwantes-An TH, Moeckel G et al (2022) Development and external validation of a diagnostic model for biopsy-proven acute interstitial nephritis using electronic health record data. Nephrol Dial Transplant 37(11):2214–2222
pubmed: 34865148
doi: 10.1093/ndt/gfab346
Moledina DG, Wilson FP, Kukova L, Obeid W, Luciano R, Kuperman M, Moeckel GW, Kashgarian M, Perazella MA, Cantley LG et al (2021) Urine interleukin-9 and tumor necrosis factor-alpha for prognosis of human acute interstitial nephritis. Nephrol Dial Transplant 36(10):1851–1858
pubmed: 33125471
doi: 10.1093/ndt/gfaa169
Moledina DG, Wilson FP, Pober JS, Perazella MA, Singh N, Luciano RL, Obeid W, Lin H, Kuperman M, Moeckel GW et al (2019) Urine TNF-alpha and IL-9 for clinical diagnosis of acute interstitial nephritis. JCI Insight 4:10
doi: 10.1172/jci.insight.127456
Stark JE, Opoka AM, Mallela J, Devarajan P, Ma Q, Levinsky NC, Stringer KF, Wong HR, Alder MN (2020) Juvenile OLFM4-null mice are protected from sepsis. Am J Physiol Renal Physiol 318(3):F809–F816
pubmed: 32068457
pmcid: 7099509
doi: 10.1152/ajprenal.00443.2019
Hasson DC, Krallman K, VanDenHeuvel K, Menon S, Piraino G, Devarajan P, Goldstein SL, Alder MN (2022) Olfactomedin 4 as a novel loop of Henle-specific acute kidney injury biomarker. Physiol Rep 10(18):e15453
pubmed: 36117416
pmcid: 9483618
doi: 10.14814/phy2.15453
Hasson DC, Zhang B, Krallman K, Rose JE, Kempton KM, Steele P, Devarajan P, Goldstein SL, Alder MN (2023) Acute kidney injury biomarker olfactomedin 4 predicts furosemide responsiveness. Pediatr Nephrol. https://doi.org/10.1007/s00467-023-05920-2
doi: 10.1007/s00467-023-05920-2
pubmed: 37010559
Stanski NL, Wong HR, Basu RK, Cvijanovich NZ, Fitzgerald JC, Weiss SL, Bigham MT, Jain PN, Schwarz A, Lutfi R et al (2021) Recalibration of the Renal Angina Index for Pediatric Septic Shock. Kidney Int Rep 6(7):1858–1867
pubmed: 34307980
pmcid: 8258591
doi: 10.1016/j.ekir.2021.04.022
de Morais DG, Sanches TRC, Santinho MAR, Yada EY, Segura GC, Lowe D, Navarro G, Seabra VF, Taniguchi LU, Malbouisson LMS et al (2022) Urinary sodium excretion is low prior to acute kidney injury in patients in the intensive care unit. Front Nephrol. https://doi.org/10.3389/fneph.2022.929743
doi: 10.3389/fneph.2022.929743
pubmed: 37675036
pmcid: 10479577
Bagshaw SM, Al-Khafaji A, Artigas A, Davison D, Haase M, Lissauer M, Zacharowski K, Chawla LS, Kwan T, Kampf JP et al (2021) External validation of urinary C-C motif chemokine ligand 14 (CCL14) for prediction of persistent acute kidney injury. Crit Care 25(1):185
pubmed: 34059102
pmcid: 8166095
doi: 10.1186/s13054-021-03618-1
Rewa OG, Bagshaw SM, Wang X, Wald R, Smith O, Shapiro J, McMahon B, Liu KD, Trevino SA, Chawla LS et al (2019) The furosemide stress test for prediction of worsening acute kidney injury in critically ill patients: A multicenter, prospective, observational study. J Crit Care 52:109–114
pubmed: 31035185
pmcid: 8704439
doi: 10.1016/j.jcrc.2019.04.011
Advani A (2020) Acute Kidney Injury: A Bona Fide Complication of Diabetes. Diabetes 69(11):2229–2237
pubmed: 33082271
doi: 10.2337/db20-0604
Demirjian S, Bashour CA, Shaw A, Schold JD, Simon J, Anthony D, Soltesz E, Gadegbeku CA (2022) Predictive Accuracy of a Perioperative Laboratory Test-Based Prediction Model for Moderate to Severe Acute Kidney Injury After Cardiac Surgery. JAMA 327(10):956–964
pubmed: 35258532
pmcid: 8905398
doi: 10.1001/jama.2022.1751
Finlay S, Bray B, Lewington AJ, Hunter-Rowe CT, Banerjee A, Atkinson JM, Jones MC (2013) Identification of risk factors associated with acute kidney injury in patients admitted to acute medical units. Clin Med (Lond) 13(3):233–238
pubmed: 23760694
doi: 10.7861/clinmedicine.13-3-233
Hoste E, Bihorac A, Al-Khafaji A, Ortega LM, Ostermann M, Haase M, Zacharowski K, Wunderink R, Heung M, Lissauer M et al (2020) Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 46(5):943–953
pubmed: 32025755
pmcid: 7210248
doi: 10.1007/s00134-019-05919-0
Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Kimmel PL, Seneff MG (2013) Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care 17(5):R207
pubmed: 24053972
pmcid: 4057505
doi: 10.1186/cc13015
Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Bennett MR, Kimmel PL et al (2015) Furosemide Stress Test and Biomarkers for the Prediction of AKI Severity. J Am Soc Nephrol 26(8):2023–2031
pubmed: 25655065
pmcid: 4520172
doi: 10.1681/ASN.2014060535