Immunohistological evaluation of patients treated with intra-arterial chemoradiotherapy and surgery for oral cancer.
CD8
Forkhead box P3
Intra-arterial chemotherapy
Oral cancer
PD-L1
Radiotherapy
Tumor immunity
Journal
Medical molecular morphology
ISSN: 1860-1499
Titre abrégé: Med Mol Morphol
Pays: Japan
ID NLM: 101239023
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
31
05
2023
accepted:
20
07
2023
medline:
20
11
2023
pubmed:
29
7
2023
entrez:
28
7
2023
Statut:
ppublish
Résumé
Preoperative intra-arterial chemoradiotherapy (IACRT) can improve the outcome and reduce the extent of surgery in patients with advanced oral cancer. However, the response to this regimen varies among patients, which may be related to the immune status of the tumor. We investigated the effects of proteins involved in tumor immunity on the outcomes of combined IACRT and surgery for oral cancer. We examined CD8 + and FoxP3 + tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression on immune cells and tumor cells in pretreatment biopsy samples from 69 patients diagnosed with oral cancer treated with IACRT at our institution during 2000-2020. Patients with abundant CD8 + TILs had significantly better 5-year disease-specific survival (DSS) compared to that of patients with less infiltration of these cells (P = 0.016). Patients with higher FoxP3 + T-cells invasion had significantly better DSS compared to that of less FoxP3 (P = 0.005). Patients with high PD-L1 expression in tumor cells and immune cells had significantly better DSS than that of patients with low PD-L1 expression in these cells (P = 0.009 and P = 0.025, respectively). Collectively, these results suggest that the tumor immune microenvironment could affect outcomes of IACRT treatment in oral cancer.
Identifiants
pubmed: 37507576
doi: 10.1007/s00795-023-00367-8
pii: 10.1007/s00795-023-00367-8
doi:
Substances chimiques
B7-H1 Antigen
0
Forkhead Transcription Factors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
288-296Subventions
Organisme : Japan Society for the Promotion of Science
ID : 21K07648
Organisme : Japan Society for the Promotion of Science
ID : 21K07680
Organisme : Japan Society for the Promotion of Science
ID : 22K07671
Organisme : Japan Society for the Promotion of Science
ID : 23K07161
Organisme : Japan Society for the Promotion of Science
ID : 23K14923
Informations de copyright
© 2023. The Author(s) under exclusive licence to The Japanese Society for Clinical Molecular Morphology.
Références
Valdez JA, Brennan MT (2018) Impact of oral cancer on quality of life. Dent Clin North Am 62(1):143–154. https://doi.org/10.1016/j.cden.2017.09.001
doi: 10.1016/j.cden.2017.09.001
pubmed: 29126491
Fuwa N, Kodaira T, Furutani K et al (2008) Intra-arterial chemoradiotherapy for locally advanced oral cavity cancer: analysis of therapeutic results in 134 cases. Br J Cancer 98(6):1039–1045. https://doi.org/10.1038/sj.bjc.6604272
doi: 10.1038/sj.bjc.6604272
pubmed: 18283309
pmcid: 2275486
Mitsudo K, Hayashi Y, Minamiyama S et al (2018) Chemoradiotherapy using retrograde superselective intra-arterial infusion for tongue cancer: analysis of therapeutic results in 118 cases. Oral Oncol 79:71–77. https://doi.org/10.1016/j.oraloncology.2018.02.002
doi: 10.1016/j.oraloncology.2018.02.002
pubmed: 29598953
Koike K, Ohashi N, Nishiyama K et al (2022) Clinical and histopathologic effects of neoadjuvant intra-arterial chemoradiotherapy with cisplatin in combination with oral S-1 on stage III and IV oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 134(3):347–353. https://doi.org/10.1016/j.oooo.2022.04.042
doi: 10.1016/j.oooo.2022.04.042
pubmed: 35869018
Fukushima Y, Someya M, Nakata K et al (2018) Influence of PD-L1 expression in immune cells on the response to radiation therapy in patients with oropharyngeal squamous cell carcinoma. Radiother Oncol 129(2):409–414. https://doi.org/10.1016/j.radonc.2018.08.023
doi: 10.1016/j.radonc.2018.08.023
pubmed: 30249348
Tsuchiya T, Someya M, Takada Y et al (2020) Association between radiotherapy-induced alteration of programmed death ligand 1 and survival in patients with uterine cervical cancer undergoing preoperative radiotherapy. Strahlenther Onkol 196(8):725–735. https://doi.org/10.1007/s00066-019-01571-1
doi: 10.1007/s00066-019-01571-1
pubmed: 31953603
Someya M, Tsuchiya T, Fukushima Y et al (2020) Association between cancer immunity and treatment results in uterine cervical cancer patients treated with radiotherapy. Jpn J Clin Oncol 50(11):1290–1297. https://doi.org/10.1093/jjco/hyaa149
doi: 10.1093/jjco/hyaa149
pubmed: 33089868
Polesel J, Menegaldo A, Tirelli G et al (2021) Prognostic significance of PD-L1 expression in patients with primary oropharyngeal squamous cell carcinoma: a meta-analysis. Front Oncol 11:787864. https://doi.org/10.3389/fonc.2021.787864
doi: 10.3389/fonc.2021.787864
pubmed: 34900743
pmcid: 8655333
Sakata K, Matsumoto Y, Tauchi H et al (2001) Expression of genes involved in repair of DNA double-strand breaks in normal and tumor tissues. Int J Radiat Oncol Biol Phys 49(1):161–167. https://doi.org/10.1016/s0360-3016(00)01352-3
doi: 10.1016/s0360-3016(00)01352-3
pubmed: 11163510
Kim HR, Ha SJ, Hong MH et al (2016) PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep 6:36956. https://doi.org/10.1038/srep36956
doi: 10.1038/srep36956
pubmed: 27841362
pmcid: 5107906
Fehrenbacher L, Spira A, Ballinger M et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846. https://doi.org/10.1016/S0140-6736(16)00587-0
doi: 10.1016/S0140-6736(16)00587-0
pubmed: 26970723
Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48(3):452–458. https://doi.org/10.1038/bmt.2012.244
doi: 10.1038/bmt.2012.244
pubmed: 23208313
Fan KH, Lin CY, Kang CJ et al (2007) Combined-modality treatment for advanced oral tongue squamous cell carcinoma. Int J Radiat Oncol Biol Phys 67(2):453–461. https://doi.org/10.1016/j.ijrobp.2006.06.026
doi: 10.1016/j.ijrobp.2006.06.026
pubmed: 17236967
Goldstein DP, Bachar GY, Lea J et al (2013) Outcomes of squamous cell cancer of the oral tongue managed at the Princess Margaret Hospital. Head Neck 35(5):632–641. https://doi.org/10.1002/hed.23001
doi: 10.1002/hed.23001
pubmed: 22544679
Wendt TG, Grabenbauer GG, Rödel CM et al (1998) Simultaneous radiochemotherapy versus radiotherapy alone in advanced head and neck cancer: a randomized multicenter study. J Clin Oncol 16(4):1318–1324. https://doi.org/10.1200/JCO.1998.16.4.1318
doi: 10.1200/JCO.1998.16.4.1318
pubmed: 9552032
Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6):567–578. https://doi.org/10.1056/NEJMoa053422
doi: 10.1056/NEJMoa053422
pubmed: 16467544
Hayashi Y, Mitsudo K, Sakuma K et al (2017) Clinical outcomes of retrograde intra-arterial chemotherapy concurrent with radiotherapy for elderly oral squamous cell carcinoma patients aged over 80 years old. Radiat Oncol 12(1):112. https://doi.org/10.1186/s13014-017-0847-3
doi: 10.1186/s13014-017-0847-3
pubmed: 28673362
pmcid: 5496408
Mitsudo K, Shigetomi T, Fujimoto Y et al (2011) Organ preservation with daily concurrent chemoradiotherapy using superselective intra-arterial infusion via a superficial temporal artery for T3 and T4 head and neck cancer. Int J Radiat Oncol Biol Phys 79(5):1428–1435. https://doi.org/10.1016/j.ijrobp.2010.01.011
doi: 10.1016/j.ijrobp.2010.01.011
pubmed: 20605340
Chen S, Crabill GA, Pritchard TS et al (2019) Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer 7(1):305. https://doi.org/10.1186/s40425-019-0770-2
doi: 10.1186/s40425-019-0770-2
pubmed: 31730010
pmcid: 6858680
Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287. https://doi.org/10.1038/nrc.2016.36
doi: 10.1038/nrc.2016.36
pubmed: 27079802
pmcid: 5381938
Minami K, Kogashiwa Y, Ebihara Y et al (2017) Human papillomavirus and p16 protein expression as prognostic biomarkers in mobile tongue cancer. Acta Otolaryngol 137(10):1121–1126. https://doi.org/10.1080/00016489.2017.1339327
doi: 10.1080/00016489.2017.1339327
pubmed: 28669249
Ramshankar V, Soundara VT, Shyamsundar V et al (2014) Risk stratification of early stage oral tongue cancers based on HPV status and p16 immunoexpression. Asian Pac J Cancer Prev 15(19):8351–8359. https://doi.org/10.7314/apjcp.2014.15.19.8351
doi: 10.7314/apjcp.2014.15.19.8351
pubmed: 25339028
Santin AD, Hermonat PL, Ravaggi A et al (1999) Induction of human papillomavirus-specific CD4(+) and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cervical cancer. J Virol 73(7):5402–5410. https://doi.org/10.1128/JVI.73.7.5402-5410.1999
doi: 10.1128/JVI.73.7.5402-5410.1999
pubmed: 10364287
pmcid: 112596
Shang B, Liu Y, Jiang SJ et al (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179. https://doi.org/10.1038/srep15179
doi: 10.1038/srep15179
pubmed: 26462617
pmcid: 4604472
Balermpas P, Martin D, Wieland U et al (2017) Human papilloma virus load and PD-1/PD-L1, CD8+ and FOXP3 in anal cancer patients treated with chemoradiotherapy: rationale for immunotherapy. Oncoimmunology 6(3):e1288331. https://doi.org/10.1080/2162402X.2017.1288331
doi: 10.1080/2162402X.2017.1288331
pubmed: 28405521
pmcid: 5384387
Dwivedi M, Tiwari S, Kemp EH et al (2022) Implications of regulatory T cells in anti-cancer immunity: from pathogenesis to therapeutics. Heliyon 8(8):e10450. https://doi.org/10.1016/j.heliyon.2022.e10450
doi: 10.1016/j.heliyon.2022.e10450
pubmed: 36082331
pmcid: 9445387