Thyroid disturbances after COVID-19 and the effect of vaccination in children: a prospective tri-center registry analysis.


Journal

European journal of pediatrics
ISSN: 1432-1076
Titre abrégé: Eur J Pediatr
Pays: Germany
ID NLM: 7603873

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 03 05 2023
accepted: 03 07 2023
revised: 19 06 2023
medline: 1 11 2023
pubmed: 25 7 2023
entrez: 24 7 2023
Statut: ppublish

Résumé

Rapidly evolving clinical data suggest that the novel coronavirus (SARS-CoV-2) and vaccination against COVID-19 might be associated with thyroid disturbances. However, studies remain limited among the pediatric population. Our aim was to assess the prevalence and permanence of thyroid autoimmunity (TA) and dysfunction in children after an acute infection and its potential association with vaccination. A prospective, multicenter registry analysis was performed among 458 children (mean age: 12.4 ± 3,8 years, 45.4% male) with preceding COVID-19. Patient inclusion lasted from 24

Identifiants

pubmed: 37488409
doi: 10.1007/s00431-023-05097-8
pii: 10.1007/s00431-023-05097-8
pmc: PMC10587318
doi:

Substances chimiques

COVID-19 Vaccines 0
Thyrotropin 9002-71-5

Types de publication

Multicenter Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4443-4455

Informations de copyright

© 2023. The Author(s).

Références

Knack RS, Hanada T, Knack RS, Mayr K (2021) Hashimoto’s thyroiditis following SARS-CoV-2 infection. BMJ Case Rep 14(8):e244909. https://doi.org/10.1136/bcr-2021-244909
Mateu-Salat M, Urgell E, Chico A (2020) SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J Endocrinol Invest 43(10):1527–1528. https://doi.org/10.1007/s40618-020-01366-7
doi: 10.1007/s40618-020-01366-7 pubmed: 32686042 pmcid: 7368923
Anaya JM, Monsalve DM, Rojas M, Rodríguez Y, Montoya-García N, Mancera-Navarro LM, Villadiego-Santana AM, Rodríguez-Leguizamón G, Acosta-Ampudia Y, Ramírez-Santana C (2021) Latent rheumatic, thyroid and phospholipid autoimmunity in hospitalized patients with COVID-19. J Transl Autoimmun 4:100091. https://doi.org/10.1016/j.jtauto.2021.100091
Muller I, Cannavaro D, Dazzi D, Covelli D, Mantovani G, Muscatello A, Ferrante E, Orsi E, Resi V, Longari V, Cuzzocrea M, Bandera A, Lazzaroni E, Dolci A, Ceriotti F, Re TE, Gori A, Arosio M, Salvi M (2020) SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol 8(9):739–741. https://doi.org/10.1016/s2213-8587(20)30266-7
doi: 10.1016/s2213-8587(20)30266-7 pubmed: 32738929 pmcid: 7392564
Alphan Uc Z, Yagcı P, Adibelli Z, Duran C (2023) The spectrum of thyroid function tests and autoantibodies during hospitalization and after six months of discharge in COVID-19 patients: does COVID-19 trigger autoimmunity? Endocr Res:1–11. https://doi.org/10.1080/07435800.2023.2188086
Lui DTW, Tsoi KH, Lee CH, Cheung CYY, Fong CHY, Lee ACH, Tam AR, Pang P, Ho TY, Law CY, Lam CW, To KKW, Chow WS, Woo YC, Hung IFN, Tan KCB, Lam KSL (2023) A prospective follow-up on thyroid function, thyroid autoimmunity and long COVID among 250 COVID-19 survivors. Endocrine:1–12. https://doi.org/10.1007/s12020-022-03281-8
Bornemann C, Woyk K, Bouter C (2021) Case report: two cases of subacute thyroiditis following SARS-CoV-2 vaccination. Front Med (Lausanne) 8:737142. https://doi.org/10.3389/fmed.2021.737142
Oğuz SH, Şendur SN, İremli BG, Gürlek A, Erbas T, Ünlütürk U (2022) SARS-CoV-2 vaccine-induced thyroiditis: safety of revaccinations and clinical follow-up. J Clin Endocrinol Metab 107(5):e1823–e1834. https://doi.org/10.1210/clinem/dgac049
doi: 10.1210/clinem/dgac049 pubmed: 35100622
İremli BG, Şendur SN, Ünlütürk U (2021) Three cases of subacute thyroiditis following SARS-CoV-2 vaccine: postvaccination ASIA syndrome. J Clin Endocrinol Metab 106(9):2600–2605. https://doi.org/10.1210/clinem/dgab373
doi: 10.1210/clinem/dgab373 pubmed: 34043800
Garai R, Krivácsy P, Herczeg V, Kovács F, Tél B, Kelemen J, Máthé A, Zsáry E, Takács J, Veres DS, Szabó AJ (2022) Clinical assessment of children with long COVID syndrome. Pediatr Res. https://doi.org/10.1038/s41390-022-02378-0
doi: 10.1038/s41390-022-02378-0 pubmed: 36474113 pmcid: 10172119
Joubert K, Gyenis G (2016) The Hungarian longitudinal growth study: from birth to the age of 18 years. Hungarian Demographic Research Institute Working Papers 23:61–64
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42(2):377–381. https://doi.org/10.1016/j.jbi.2008.08.010
doi: 10.1016/j.jbi.2008.08.010 pubmed: 18929686
Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN (2019) The REDCap consortium: building an international community of software platform partners. J Biomed Inform 95:103208. https://doi.org/10.1016/j.jbi.2019.103208
R Core T (2022) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
Pinheiro J, Bates D, R Core T (2022) Nlme: linear and nonlinear mixed effects models
Hadley W, Chang W, Henry L, Pedersen T, Takahashi K, Wilke C, Woo K, Yutani H, Dunnington D (2022) Ggplot2: create elegant data visualisations using the grammar of graphics
Caron P (2022) Autoimmune and inflammatory thyroid diseases following vaccination with SARS-CoV-2 vaccines: from etiopathogenesis to clinical management. Endocrine 78(3):406–417. https://doi.org/10.1007/s12020-022-03118-4
doi: 10.1007/s12020-022-03118-4 pubmed: 35763241 pmcid: 9243876
Pujol A, Gómez LA, Gallegos C, Nicolau J, Sanchís P, González-Freire M, López-González ÁA, Dotres K, Masmiquel L (2022) Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV2 vaccination: from Graves’ disease to silent thyroiditis. J Endocrinol Invest 45(4):875–882. https://doi.org/10.1007/s40618-021-01707-0
doi: 10.1007/s40618-021-01707-0 pubmed: 34792795
Das L, Bhadada SK, Sood A (2022) Post-COVID-vaccine autoimmune/inflammatory syndrome in response to adjuvants (ASIA syndrome) manifesting as subacute thyroiditis. J Endocrinol Invest 45(2):465–467. https://doi.org/10.1007/s40618-021-01681-7
doi: 10.1007/s40618-021-01681-7 pubmed: 34585363
Vojdani A, Kharrazian D (2020) Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol 217:108480. https://doi.org/10.1016/j.clim.2020.108480
Wong CKH, Lui DTW, Xiong X, Chui CSL, Lai FTT, Li X, Wan EYF, Cheung CL, Lee CH, Woo YC, Au ICH, Chung MSH, Cheng FWT, Tan KCB, Wong ICK (2022) Risk of thyroid dysfunction associated with mRNA and inactivated COVID-19 vaccines: a population-based study of 2.3 million vaccine recipients. BMC Med 20(1):339. https://doi.org/10.1186/s12916-022-02548-1
García-García E, Vázquez-López MÁ, García-Fuentes E, Rodríguez-Sánchez FI, Muñoz FJ, Bonillo-Perales A, Soriguer F (2012) Iodine intake and prevalence of thyroid autoimmunity and autoimmune thyroiditis in children and adolescents aged between 1 and 16 years. Eur J Endocrinol 167(3):387–392. https://doi.org/10.1530/eje-12-0267
doi: 10.1530/eje-12-0267 pubmed: 22728345
Mariotti S, Prinzis A, Ghiani M, Cambuli VM, Pilia S, Marras V, Carta D, Loche S (2009) Puberty is associated with a marked increase of the female sex predominance in chronic autoimmune thyroiditis. Horm Res 72(1):52–56. https://doi.org/10.1159/000224341
doi: 10.1159/000224341 pubmed: 19571560
Kondrashova A, Viskari H, Haapala A-M, Seiskari T, Kulmala P, Ilonen J, Knip M, Hyöty H (2008) Serological evidence of thyroid autoimmunity among schoolchildren in two different socioeconomic environments. J Clin Endocrinol Metab 93(3):729–734. https://doi.org/10.1210/jc.2007-1644
doi: 10.1210/jc.2007-1644 pubmed: 18073310
Lania A, Sandri MT, Cellini M, Mirani M, Lavezzi E, Mazziotti G (2020) Thyrotoxicosis in patients with COVID-19: the THYRCOV study. Eur J Endocrinol 183(4):381–387. https://doi.org/10.1530/eje-20-0335
doi: 10.1530/eje-20-0335 pubmed: 32698147 pmcid: 9494315
Lui DTW, Lee CH, Chow WS, Lee ACH, Tam AR, Fong CHY, Law CY, Leung EKH, To KKW, Tan KCB, Woo YC, Lam CW, Hung IFN, Lam KSL (2021) Role of non-thyroidal illness syndrome in predicting adverse outcomes in COVID-19 patients predominantly of mild-to-moderate severity. Clin Endocrinol (Oxf) 95(3):469–477. https://doi.org/10.1111/cen.14476
doi: 10.1111/cen.14476 pubmed: 33813743
Hu X, Chen Y, Shen Y, Tian R, Sheng Y, Que H (2022) Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: a systematic review and meta-analysis. Front Public Health 10:1020709. https://doi.org/10.3389/fpubh.2022.1020709
doi: 10.3389/fpubh.2022.1020709 pubmed: 36311599 pmcid: 9608544
Hanley P, Lord K, Bauer AJ (2016) Thyroid disorders in children and adolescents: a review. JAMA Pediatr 170(10):1008–1019. https://doi.org/10.1001/jamapediatrics.2016.0486
doi: 10.1001/jamapediatrics.2016.0486 pubmed: 27571216
Irene Kaloumenou GM, Alevizaki M, Duntas LH, Mantzou E, Ladopoulos C, Antoniou A, Chiotis D, Papassotiriou I, Chrousos GP, Dacou-Voutetakis C (2008) Thyroid autoimmunity in schoolchildren in an area with long-standing iodine sufficiency: correlation with gender, pubertal stage, and maternal thyroid autoimmunity. Thyroid 18(7):747–754. https://doi.org/10.1089/thy.2007.0370
doi: 10.1089/thy.2007.0370 pubmed: 18631003
Das BB, Shakti D, Akam-Venkata J, Obi O, Weiland M, Moskowitz W (2022) SARS-CoV-2 infection induced thyroid storm and heart failure in an adolescent girl. Cardiol Young 32(6):988–992. https://doi.org/10.1017/s1047951121004352
doi: 10.1017/s1047951121004352 pubmed: 34657643
Flokas ME, Bustamante VH, Kanakatti Shankar R (2022) New onset primary adrenal insufficiency and autoimmune hypothyroidism in a pediatric patient presenting with MIS-C. Horm Res Paediatr 95(4):397–401. https://doi.org/10.1159/000525227
doi: 10.1159/000525227 pubmed: 35609533
Qureshi NK, Bansal SK (2021) Autoimmune thyroid disease and psoriasis vulgaris after COVID-19 in a male teenager. Case Rep Pediatr:7584729. https://doi.org/10.1155/2021/7584729
Sakaleshpur Kumar V, Dhananjaya SR, Sathish HS, Gowda S (2022) Auto-immune thyroiditis in SARS-CoV-2 exposed twins. Eur Rev Med Pharmacol Sci 26(13):4881–4883. https://doi.org/10.26355/eurrev_202207_29213
Rotondi M, Coperchini F, Ricci G, Denegri M, Croce L, Ngnitejeu ST, Villani L, Magri F, Latrofa F, Chiovato L (2021) Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. J Endocrinol Invest 44(5):1085–1090. https://doi.org/10.1007/s40618-020-01436-w
doi: 10.1007/s40618-020-01436-w pubmed: 33025553
Murugan AK, Alzahrani AS (2021) SARS-CoV-2: emerging role in the pathogenesis of various thyroid diseases. J Inflamm Res 14:6191–6221. https://doi.org/10.2147/jir.S332705
doi: 10.2147/jir.S332705 pubmed: 34853527 pmcid: 8628126
Vahabi M, Ghazanfari T, Sepehrnia S (2022) Molecular mimicry, hyperactive immune system, and SARS-COV-2 are three prerequisites of the autoimmune disease triangle following COVID-19 infection. Int Immunopharmacol 112:109183. https://doi.org/10.1016/j.intimp.2022.109183

Auteurs

Vivien Herczeg (V)

1st Department of Paediatrics, Semmelweis University, Budapest, Hungary. herczeg.vivien1@med.semmelweis-univ.hu.
Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary. herczeg.vivien1@med.semmelweis-univ.hu.

Réka Garai (R)

1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.

Johanna Takács (J)

Department of Social Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.

Fanni Kovács (F)

1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.

Andrea Luczay (A)

1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.

Erzsébet Hrapka (E)

1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.

Péter Krivácsy (P)

1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.

Éva Hosszú (É)

Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.
2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.

Nikolett Jusztina Beniczky (NJ)

Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.
2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.

Ágnes Németh (Á)

Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.
2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.

Eszter Szabina Szilágyi (ES)

Faculty of Medicine, Semmelweis University, Budapest, Hungary.

Anna Pécsi (A)

Faculty of Medicine, Semmelweis University, Budapest, Hungary.

Zsófia Szabó (Z)

Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.

Attila József Szabó (AJ)

1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary.

Péter Tóth-Heyn (P)

1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH