Lateralization of interictal temporal lobe hypoperfusion in lesional and non-lesional temporal lobe epilepsy using arterial spin labeling MRI.
Arterial spin labeling MRI
Drug-resistant epilepsy
Focal epilepsy
Temporal lobe epilepsy
Journal
Epilepsy research
ISSN: 1872-6844
Titre abrégé: Epilepsy Res
Pays: Netherlands
ID NLM: 8703089
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
28
12
2022
revised:
11
04
2023
accepted:
01
05
2023
pmc-release:
01
07
2024
medline:
5
6
2023
pubmed:
16
5
2023
entrez:
15
5
2023
Statut:
ppublish
Résumé
Non-invasive imaging studies play a critical role in the presurgical evaluation of patients with drug-resistant temporal lobe epilepsy (TLE), particularly in helping to lateralize the seizure focus. Arterial Spin Labeling (ASL) MRI has been widely used to non-invasively study cerebral blood flow (CBF), with somewhat variable interictal alterations reported in TLE. Here, we compare temporal lobe subregional interictal perfusion and symmetry in lesional (MRI+) and non-lesional (MRI-) TLE compared to healthy volunteers (HVs). Twenty TLE patients (9 MRI+, 11 MRI-) and 14 HVs under went 3 T Pseudo-Continuous ASL MRI through an epilepsy imaging research protocol at the NIH Clinical Center. We compared normalized CBF and absolute asymmetry indices in multiple temporal lobe subregions. Compared to HVs, both MRI+ and MRI- TLE groups demonstrated significant ipsilateral mesial and lateral temporal hypoperfusion, specifically in the hippocampal and anterior temporal neocortical subregions, with additional hypoperfusion in the ipsilateral parahippocampal gyrus in the MRI+ and contralateral hippocampus in the MRI- TLE groups. Contralateral to the seizure focus, there was significant relative hypoperfusion in multiple subregions in the MRI- compared to the MRI+ TLE groups. The MRI+ group therefore had significantly greater asymmetry across multiple temporal subregions compared to the MRI- TLE and HV groups. No significant differences in asymmetry were found between the MRI- TLE and HV groups. We found a similar extent of interictal ipsilateral temporal hypoperfusion in MRI+ and MRI- TLE. However, significantly increased asymmetries were found only in the MRI+ group due to differences in perfusion contralateral to the seizure focus between the patient groups. The lack of asymmetry in the MRI- group may negatively impact the utility of interictal ASL for seizure focus lateralization in this patient population.
Identifiants
pubmed: 37187039
pii: S0920-1211(23)00088-8
doi: 10.1016/j.eplepsyres.2023.107163
pmc: PMC10247543
mid: NIHMS1900851
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
107163Subventions
Organisme : Intramural NIH HHS
ID : Z99 NS999999
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA NS009431
Pays : United States
Informations de copyright
Published by Elsevier B.V.
Déclaration de conflit d'intérêts
Declarations of Competing Interest Dr. Abdennadher receives research support from the Simon Grinspoon Award and the Integrated Pilot Grant Award at Boston University for research not related to this study. The remaining authors have no conflicts of interest.
Références
J Neuroradiol. 2010 May;37(2):127-30
pubmed: 19577299
Magn Reson Imaging. 2013 Jul;31(6):1001-5
pubmed: 23623332
N Engl J Med. 2001 Aug 2;345(5):311-8
pubmed: 11484687
Eur J Neurol. 2016 Jan;23(1):160-7
pubmed: 26346555
Nat Med. 2008 Dec;14(12):1377-83
pubmed: 19029985
Sci Rep. 2016 Jul 04;6:28867
pubmed: 27374369
Comput Biomed Res. 1996 Jun;29(3):162-73
pubmed: 8812068
Eur J Radiol. 2016 Jul;85(7):1295-303
pubmed: 27235877
J Comput Assist Tomogr. 2008 Mar-Apr;32(2):291-2
pubmed: 18379320
J Child Neurol. 2013 Nov;28(11):1474-1482
pubmed: 23696629
AJNR Am J Neuroradiol. 2018 Oct;39(10):1791-1798
pubmed: 30237304
J Neurol Sci. 2015 Dec 15;359(1-2):424-9
pubmed: 26478131
Epileptic Disord. 2011 Sep;13(3):336-9
pubmed: 21865122
Epilepsy Res. 2014 Dec;108(10):1932-9
pubmed: 25454505
J Neuroradiol. 2010 Mar;37(1):60-3
pubmed: 19674791
eNeurologicalSci. 2018 Jun 26;12:5-18
pubmed: 30229134
J Magn Reson Imaging. 2015 Nov;42(5):1386-97
pubmed: 25884243
Acta Radiol. 2015 Apr;56(4):477-81
pubmed: 24782571
Magn Reson Med. 2000 May;43(5):768-72
pubmed: 10800045
Int J Mol Imaging. 2011;2011:813028
pubmed: 21785722
AJNR Am J Neuroradiol. 2001 Aug;22(7):1334-41
pubmed: 11498422
J Neuroradiol. 2009 Dec;36(5):303-5
pubmed: 19487030
Neurol Res. 2021 Apr;43(4):299-306
pubmed: 33320070
Front Neurol. 2019 Apr 03;10:318
pubmed: 31001198
Seizure. 2019 Feb;65:151-158
pubmed: 30718217
Neuroradiology. 2012 Jun;54(6):653-6
pubmed: 22418862
Diagn Interv Imaging. 2013 Dec;94(12):1211-23
pubmed: 23850321
Epilepsy Behav. 2012 Oct;25(2):266-76
pubmed: 23041175
eNeurologicalSci. 2020 Mar 04;19:100233
pubmed: 32181377
Epilepsy Res. 2017 Jan;129:95-100
pubmed: 28043066
J Neurosci Res. 2020 Aug;98(8):1517-1531
pubmed: 32476173
Neurology. 2016 May 3;86(18):1744-5
pubmed: 27164650
Epilepsy Res. 2010 May;89(2-3):310-8
pubmed: 20227852
J Neurosurg Pediatr. 2020 Dec 25;27(3):243-252
pubmed: 33361483
Brain. 2017 Nov 1;140(11):2895-2911
pubmed: 29053782
Magn Reson Med. 2001 Mar;45(3):431-5
pubmed: 11241700
Epilepsy Res. 2008 Dec;82(2-3):183-9
pubmed: 19041041
Cereb Cortex. 2016 Aug;26(8):3508-26
pubmed: 27230218
Neuroimage. 2014 Nov 15;102 Pt 1:49-59
pubmed: 23792219
Neuroimage Clin. 2018 Jun 07;19:824-830
pubmed: 30013926
Neuroimage Clin. 2016 Apr 12;11:648-657
pubmed: 27222796
J Nucl Med. 2013 Oct;54(10):1775-81
pubmed: 23970368