Exploring the Fate of Antibody-Encoding pDNA after Intramuscular Electroporation in Mice.
DNA localization
DNA scope
DNA/RNA quantification
antibody gene transfer
intramuscular electroporation
plasmid DNA
Journal
Pharmaceutics
ISSN: 1999-4923
Titre abrégé: Pharmaceutics
Pays: Switzerland
ID NLM: 101534003
Informations de publication
Date de publication:
06 Apr 2023
06 Apr 2023
Historique:
received:
01
03
2023
revised:
29
03
2023
accepted:
31
03
2023
medline:
28
4
2023
pubmed:
28
4
2023
entrez:
28
4
2023
Statut:
epublish
Résumé
DNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations. pDNA encoding the murine anti-HER2 4D5 mAb was administered to BALB/c mice via intramuscular injection followed by electroporation. Muscle biopsies and blood samples were taken at different time points (up to 3 months). In muscle, pDNA levels decreased 90% between 24 h and one week post treatment (
Identifiants
pubmed: 37111645
pii: pharmaceutics15041160
doi: 10.3390/pharmaceutics15041160
pmc: PMC10146361
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Kom op tegen Kanker (Stand up to Cancer), the Flemish cancer society
ID : NA
Organisme : Interne Fondsen KU Leuven / Internal Funds KU Leuven
ID : STG/20/039
Organisme : Research Foundation - Flanders
ID : 11K8122N
Organisme : Research Foundation - Flanders
ID : G0E2117N
Références
FEBS Lett. 1997 Apr 28;407(2):164-8
pubmed: 9166892
Vaccine. 2011 Jan 17;29(4):795-803
pubmed: 21094270
Biochem Biophys Res Commun. 2002 Nov 8;298(4):505-10
pubmed: 12408981
iScience. 2022 Aug 19;25(8):104705
pubmed: 35813873
Muscle Nerve. 2000 Apr;23(4):617-26
pubmed: 10716774
J Gene Med. 2003 Apr;5(4):324-32
pubmed: 12692866
Adv Drug Deliv Rev. 2009 Jul 2;61(7-8):603-13
pubmed: 19393704
Gene Ther. 2003 Aug;10(17):1465-70
pubmed: 12900761
Gene Ther. 2001 Mar;8(6):494-7
pubmed: 11313829
Gene Ther. 1999 Apr;6(4):482-97
pubmed: 10476208
Hum Gene Ther. 2019 Nov;30(11):1431-1443
pubmed: 31382777
Hum Gene Ther. 2021 Oct;32(19-20):1200-1209
pubmed: 34482757
Pharmaceutics. 2023 Apr 06;15(4):
pubmed: 37111645
BioDrugs. 2020 Jun;34(3):273-293
pubmed: 32157600
Oncotarget. 2018 Feb 6;9(17):13623-13636
pubmed: 29568382
Adv Drug Deliv Rev. 2007 Aug 10;59(8):698-717
pubmed: 17681634
Vaccine. 2010 May 21;28(23):3888-95
pubmed: 20371391
J Nanobiotechnology. 2019 Sep 6;17(1):94
pubmed: 31492169
MAbs. 2022 Jan-Dec;14(1):2014296
pubmed: 35030985
Clin Pharmacol Ther. 2016 Apr;99(4):419-31
pubmed: 26265133
J Control Release. 2005 Mar 2;103(1):199-207
pubmed: 15710511
STAR Protoc. 2021 Jul 28;2(3):100694
pubmed: 34382019
Mol Ther. 2004 Sep;10(3):447-55
pubmed: 15336645
J Transl Med. 2017 Jun 7;15(1):131
pubmed: 28592330
Nat Biotechnol. 2001 Dec;19(12):1155-61
pubmed: 11731785
Front Oncol. 2022 Oct 03;12:1017612
pubmed: 36263202
MAbs. 2015;7(1):9-14
pubmed: 25529996
Biol Cell. 2003 Mar-Apr;95(2):59-68
pubmed: 12799061
Mol Ther. 2001 Jun;3(6):831-41
pubmed: 11407896
Adv Genet. 2015;89:235-262
pubmed: 25620013
Mol Ther. 2020 Apr 8;28(4):1068-1077
pubmed: 32101701