Does Inflammation Play a Major Role in the Pathogenesis of Alzheimer's Disease?


Journal

Neuromolecular medicine
ISSN: 1559-1174
Titre abrégé: Neuromolecular Med
Pays: United States
ID NLM: 101135365

Informations de publication

Date de publication:
09 2023
Historique:
received: 09 01 2023
accepted: 03 03 2023
medline: 22 9 2023
pubmed: 8 4 2023
entrez: 7 4 2023
Statut: ppublish

Résumé

Alzheimer's disease (AD) is a neurodegenerative disease leading to dementia for which no effective medicine exists. Currently, the goal of therapy is only to slow down the inevitable progression of the disease and reduce some symptoms. AD causes the accumulation of proteins with the pathological structure of Aβ and tau and the induction of inflammation of nerves in the brain, which lead to the death of neurons. The activated microglial cells produce pro-inflammatory cytokines that induce a chronic inflammatory response and mediate synapse damage and the neuronal death. Neuroinflammation has been an often ignored aspect of ongoing AD research. There are more and more scientific papers taking into account the aspect of neuroinflammation in the pathogenesis of AD, although there are no unambiguous results regarding the impact of comorbidities or gender differences. This publication concerns a critical look at the role of inflammation in the progression of AD, based on the results of our own in vitro studies using model cell cultures and other researchers.

Identifiants

pubmed: 37027081
doi: 10.1007/s12017-023-08741-6
pii: 10.1007/s12017-023-08741-6
pmc: PMC10514153
doi:

Substances chimiques

Cytokines 0
Amyloid beta-Peptides 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

330-335

Informations de copyright

© 2023. The Author(s).

Références

Azam, S., Haque, M. E., Balakrishnan, R., et al. (2021). The ageing brain: Molecular and cellular basis of neurodegeneration. Frontiers in Cell Development Biology, 9, 1–22. https://doi.org/10.3389/fcell.2021.683459
doi: 10.3389/fcell.2021.683459
Chen, Z. R., Huang, J. B., Yang, S. L., & Hong, F. F. (2022). Role of cholinergic signaling in Alzheimer’s disease. Molecules, 27, 1–23. https://doi.org/10.3390/molecules27061816
doi: 10.3390/molecules27061816
Choi, Y. B., Dunn-Meynell, A. A., Marchese, M., et al. (2021). Erythropoietin-derived peptide treatment reduced neurological deficit and neuropathological changes in a mouse model of tauopathy. Alzheimer’s Research Therapy, 13, 1–14. https://doi.org/10.1186/s13195-020-00766-4
doi: 10.1186/s13195-020-00766-4
Crous-Bou, M., Minguillón, C., Gramunt, N., & Molinuevo, J. L. (2017). Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimer’s Research Therapy, 9, 1–9. https://doi.org/10.1186/s13195-017-0297-z
doi: 10.1186/s13195-017-0297-z
De, S., Whiten, D. R., Ruggeri, F. S., et al. (2019). Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer’s disease progression. Acta Neuropathologica Communications, 7, 120. https://doi.org/10.1186/s40478-019-0777-4
doi: 10.1186/s40478-019-0777-4 pubmed: 31349874 pmcid: 6659275
Dubey, S., Heinen, S., Krantic, S., et al. (2020). Clinically approved IVIg delivered to the hippocampus with focused ultrasound promotes neurogenesis in a model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 117, 32691–32700. https://doi.org/10.1073/pnas.1908658117
doi: 10.1073/pnas.1908658117 pubmed: 33288687 pmcid: 7768694
Fielder, E., Tweedy, C., Wilson, C., et al. (2020). Anti-inflammatory treatment rescues memory deficits during aging in nfkb1−/− mice. Aging Cell, 19, 1–13. https://doi.org/10.1111/acel.13188
doi: 10.1111/acel.13188
Fritzsch, J., Korn, A., Surendran, D., et al. (2021). Probing the influence of single-site mutations in the central cross-β region of amyloid β (1–40) peptides. Biomolecules, 11, 1–17. https://doi.org/10.3390/biom11121848
doi: 10.3390/biom11121848
Han, K. M., Kang, R. J., Jeon, H., et al. (2020). Regorafenib regulates AD pathology, neuroinflammation, and dendritic spinogenesis in cells and a mouse model of AD. Cells, 9, 1–20. https://doi.org/10.3390/cells9071655
doi: 10.3390/cells9071655
Hey, J. A., Yu, J. Y., Versavel, M., et al. (2018). Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of Alzheimer’s disease. Clinical Pharmacokinetics, 57, 315–333. https://doi.org/10.1007/s40262-017-0608-3
doi: 10.1007/s40262-017-0608-3 pubmed: 29063518
Iannucci, J., Sen, A., & Grammas, P. (2021). Isoform-specific effects of apolipoprotein e on markers of inflammation and toxicity in brain glia and neuronal cells in vitro. Current Issues in Molecular Biology, 43, 215–225. https://doi.org/10.3390/cimb43010018
doi: 10.3390/cimb43010018 pubmed: 34071762 pmcid: 8928993
Jiaranaikulwanitch, J. (2021). Novel multifunctional ascorbic triazole derivatives for amyloidogenic pathway inhibition, anti-inflammation, and neuroprotection. Molecules, 26, 1562.
doi: 10.3390/molecules26061562 pubmed: 33809092 pmcid: 7999550
Kageyama, Y., Irie, Y., Matsushima, Y., et al. (2021). Characterization of a conformation-restricted amyloid β peptide and immunoreactivity of its antibody in human AD brain. ACS Chemical Neuroscience. https://doi.org/10.1021/acschemneuro.1c00416
doi: 10.1021/acschemneuro.1c00416 pubmed: 34464082
Kaur, S., Raj, K., Gupta, Y. K., & Singh, S. (2021). Allicin ameliorates aluminium- and copper-induced cognitive dysfunction in Wistar rats: Relevance to neuro-inflammation, neurotransmitters and Aβ(1–42) analysis. JBIC Journal of Biological Inorganic Chemistry, 26, 495–510. https://doi.org/10.1007/s00775-021-01866-8
doi: 10.1007/s00775-021-01866-8 pubmed: 34023945
Langkammer, C., Ropele, S., Pirpamer, L., et al. (2014). MRI for iron mapping in Alzheimer’s disease. Neuro-Degenerative Diseases, 13, 189–191. https://doi.org/10.1159/000353756
doi: 10.1159/000353756 pubmed: 23942230
Li, J., Cheng, X. Y., Yang, H., et al. (2020). Matrine ameliorates cognitive deficits via inhibition of microglia mediated neuroinflammation in an Alzheimer’s disease mouse model. Die Pharmazie, 75, 344–347. https://doi.org/10.1691/ph.2020.0395
doi: 10.1691/ph.2020.0395 pubmed: 32635978
Liao, F., Yoon, H., & Kim, J. (2017). Apolipoprotein e metabolism and functions in brain and its role in Alzheimer’s disease. Current Opinion in Lipidology, 28, 60–67. https://doi.org/10.1097/MOL.0000000000000383
doi: 10.1097/MOL.0000000000000383 pubmed: 27922847 pmcid: 5213812
Maher, P. (2020). Modulation of the neuroprotective and anti-inflammatory activities of the flavonol fisetin by the transition metals iron and copper. Antioxidants, 9, 1–18. https://doi.org/10.3390/antiox9111113
doi: 10.3390/antiox9111113
Marucci, G., Dal Ben, D., Lambertucci, C., et al. (2021). Combined therapy of A1AR agonists and A2AAR antagonists in neuroinflammation. Molecules. https://doi.org/10.3390/molecules26041188
doi: 10.3390/molecules26041188 pubmed: 33672225 pmcid: 7926490
Michalska, P., Mayo, P., Fern, C., et al. (2020). Profiles of novel 1, 4-dihydropyridine derivatives for the treatment of Alzheimer’s disease. Antioxidants, 9, 650–669.
doi: 10.3390/antiox9080650 pubmed: 32708053 pmcid: 7463999
Morin, A., Mouzon, B., Ferguson, S., et al. (2020). Nilvadipine suppresses inflammation via inhibition of P-SYK and restores spatial memory deficits in a mouse model of repetitive mild TBI. Acta Neuropathologica Communications, 8, 1–13. https://doi.org/10.1186/s40478-020-01045-x
doi: 10.1186/s40478-020-01045-x
Philippens, I. H. C. H. M., & Langermans, J. A. M. (2021). Preclinical marmoset model for targeting chronic inflammation as a strategy to prevent Alzheimer′s disease. Vaccines, 9, 1–15. https://doi.org/10.3390/vaccines9040388
doi: 10.3390/vaccines9040388
Picone, P., Nuzzo, D., Caruana, L., et al. (2015). Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin’s effect. Biochimica Biophysica Acta, 1853, 1046–1059. https://doi.org/10.1016/j.bbamcr.2015.01.017
doi: 10.1016/j.bbamcr.2015.01.017
Potyrak, K., Wiatrak, B., Krzyżak, E., et al. (2021). Effect of pyrrolo[3,4-d]pyridazinone derivatives in neuroinflammation induced by preincubation with lipopolysaccharide or coculturing with microglia-like cells. Biomedicine Pharmacotherapy, 141, 111878. https://doi.org/10.1016/J.BIOPHA.2021.111878
doi: 10.1016/J.BIOPHA.2021.111878 pubmed: 34243096
Rehman, I. U., Ahmad, R., Khan, I., et al. (2021). Nicotinamide ameliorates amyloid beta-induced oxidative stress-mediated neuroinflammation and neurodegeneration in adult mouse brain. Biomedicines, 9, 1–18. https://doi.org/10.3390/biomedicines9040408
doi: 10.3390/biomedicines9040408
Schwarze, B., Korn, A., Höfling, C., et al. (2021). Peptide backbone modifications of amyloid β (1–40) impact fibrillation behavior and neuronal toxicity. Science and Reports, 11, 1–15. https://doi.org/10.1038/s41598-021-03091-4
doi: 10.1038/s41598-021-03091-4
Sochocka, M., Donskow-Łysoniewska, K., Diniz, B. S., et al. (2019). The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—A critical review. Molecular Neurobiology, 56, 1841–1851. https://doi.org/10.1007/s12035-018-1188-4
doi: 10.1007/s12035-018-1188-4 pubmed: 29936690
Strosznajder, A. K., Wójtowicz, S., Jeżyna, M. J., et al. (2021). Recent insights on the role of PPAR-β/δ in neuroinflammation and neurodegeneration, and its potential target for therapy. Neuromolecular Medicine, 23, 86–98. https://doi.org/10.1007/s12017-020-08629-9
doi: 10.1007/s12017-020-08629-9 pubmed: 33210212
Sun E, Motolani A, Campos L, Lu T (2022) The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int J Mol Sci 23:. https://doi.org/10.3390/ijms23168972
Szandruk-Bender M, Wiatrak B, Szeląg A (2022) The Risk of Developing Alzheimer’s Disease and Parkinson’s Disease in Patients with Inflammatory Bowel Disease: A Meta-Analysis. J Clin Med 11:. https://doi.org/10.3390/jcm11133704
Takeuchi, S., Ueda, N., Suzuki, K., et al. (2019). Elevated membrane cholesterol disrupts lysosomal degradation to induce β-amyloid accumulation: the potential mechanism underlying augmentation of β-amyloid pathology by type 2 diabetes mellitus. American Journal of Pathology, 189, 391–404. https://doi.org/10.1016/j.ajpath.2018.10.011
doi: 10.1016/j.ajpath.2018.10.011 pubmed: 30448407
Uddin, M. S., Kabir, M. T., Al Mamun, A., et al. (2020). Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. International Immunopharmacology, 84, 106479. https://doi.org/10.1016/j.intimp.2020.106479
doi: 10.1016/j.intimp.2020.106479 pubmed: 32353686
Vadukul, D. M., Vrancx, C., Burguet, P., et al. (2021). An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid-β. Science and Reports, 11, 1–17. https://doi.org/10.1038/s41598-021-90680-y
doi: 10.1038/s41598-021-90680-y
Wakulik, K., Wiatrak, B., Szczukowski, Ł, et al. (2020). Effect of novel pyrrolo[3,4-d]pyridazinone derivatives on lipopolysaccharide-induced neuroinflammation. International Journal of Molecular Sciences, 21, 2575. https://doi.org/10.3390/ijms21072575
doi: 10.3390/ijms21072575 pubmed: 32276316 pmcid: 7177677
Wiatrak, B., & Balon, K. (2021). Protective activity of Aβ on cell cultures (PC12 and THP-1 after differentiation) preincubated with lipopolysaccharide (LPS). Molecular Neurobiology, 58, 1453–1464. https://doi.org/10.1007/s12035-020-02204-w
doi: 10.1007/s12035-020-02204-w pubmed: 33188619
Wiatrak, B., Balon, K., Jawień, P., et al. (2022). The role of the microbiota-gut-brain axis in the development of Alzheimer’s disease. International Journla of Molecular Science. https://doi.org/10.3390/ijms23094862
doi: 10.3390/ijms23094862
Wiatrak, B., Krzyżak, E., Szczęśniak-Sięga, B., et al. (2022b). Effect of tricyclic 1,2-thiazine derivatives in neuroinflammation induced by preincubation with lipopolysaccharide or coculturing with microglia-like cells. Pharmacology Reports, 74, 890–908. https://doi.org/10.1007/s43440-022-00414-8
doi: 10.1007/s43440-022-00414-8
Wiatrak, B., Mieszała, P., & Gąsiorowski, K. (2022c). Impact of NMDA receptor activation on DNA damage in PC12 neuron-like cell cultures in the presence of β-amyloid peptides. Molecular Biology Reports, 49, 10443–10455. https://doi.org/10.1007/s11033-022-07856-6
doi: 10.1007/s11033-022-07856-6 pubmed: 36107376 pmcid: 9618537
William CM, Stern MA, Pei X, et al (2021) Impairment of visual cortical plasticity by amyloid-beta species. Neurobiol Dis 154:105344. https://doi.org/10.1016/j.nbd.2021.105344
Zanon, V. S., Lima, J. A., Amaral, R. F., et al. (2021). Design, synthesis, molecular modeling and neuroprotective effects of a new framework of cholinesterase inhibitors for Alzheimer’s disease. Journal of Biomolecular Structure & Dynamics, 39, 6112–6125. https://doi.org/10.1080/07391102.2020.1796796
doi: 10.1080/07391102.2020.1796796
Zhang, F., Zhong, R., Cheng, C., et al. (2021). New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacology Sinica, 42, 1382–1389. https://doi.org/10.1038/s41401-020-00565-5
doi: 10.1038/s41401-020-00565-5
Zhao, A., Li, Y., & Deng, Y. (2020). TNF receptors are associated with tau pathology and conversion to Alzheimer’s dementia in subjects with mild cognitive impairment. Neuroscience Letters, 738, 1–6. https://doi.org/10.1016/j.neulet.2020.135392
doi: 10.1016/j.neulet.2020.135392

Auteurs

Benita Wiatrak (B)

Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345, Wrocław, Poland. benita.wiatrak@umw.edu.pl.

Paulina Jawień (P)

Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375, Wroclaw, Poland.

Adam Szeląg (A)

Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345, Wrocław, Poland.

Izabela Jęśkowiak-Kossakowska (I)

Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345, Wrocław, Poland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH