Acidity-mediated induction of FoxP3


Journal

European journal of immunology
ISSN: 1521-4141
Titre abrégé: Eur J Immunol
Pays: Germany
ID NLM: 1273201

Informations de publication

Date de publication:
06 2023
Historique:
revised: 12 01 2023
received: 07 11 2022
accepted: 10 02 2023
medline: 7 6 2023
pubmed: 15 2 2023
entrez: 14 2 2023
Statut: ppublish

Résumé

Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive functions of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown. We observed increased TGFβ-mediated induction of Forkhead box P3

Identifiants

pubmed: 36788428
doi: 10.1002/eji.202250258
doi:

Substances chimiques

Transforming Growth Factor beta 0
Transcription Factors 0
Forkhead Transcription Factors 0
FOXP3 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2250258

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

Warburg, O., Wind, F. and Negelein, E., The metabolism of tumors in the body. J. Gen. Physiol. 1927. 8: 519-530.
Halestrap, A. P. and Price, N. T., The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 1999. 343: 281-299.
Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A., Matos, C. et al., LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016. 24: 657-671.
Gerweck, L. E. and Seetharaman, K., Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996. 56: 1194-1198.
Longo, D. L., Bartoli, A., Consolino, L., Bardini, P., Arena, F., Schwaiger, M. and Aime, S., In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res. 2016. 76: 6463-6470.
Gillies, R. J., Raghunand, N., Karczmar, G. S. and Bhujwalla, Z. M., MRI of the tumor microenvironment. J. Magn. Reson. Imaging. 2002. 16: 430-450.
Renner, K., Bruss, C., Schnell, A., Koehl, G., Becker, H. M., Fante, M., Menevse, A. N. et al., Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep. 2019. 29: 135-150. e9.
Palsson-McDermott, E. M. and O'Neill, L. A. J., The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013. 35: 965-973.
Huber, V., Camisaschi, C., Berzi, A., Ferro, S., Lugini, L., Triulzi, T., Tuccitto, A. et al., Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Vol. 43, Seminars in cancer biology, Academic Press, San Diego, CA 2017. p. 74-89.
Farr, M., Garvey, K., Bold, A. M., Kendall, M. J. and Bacon, P. A., Significance of the hydrogen ion concentration in synovial fluid in rheumatoid arthritis. Clin. Exp. Rheumatol. 1985. 3: 99-104.
Ricciardolo, F. L. M., Gaston, B. and Hunt, J., Acid stress in the pathology of asthma. J. Allergy Clin. Immunol. 2004. 113: 610-619.
Ho, P. C., Bihuniak, J. D., Macintyre, A. N., Staron, M., Liu, X., Amezquita, R., Tsui, Y. C. et al., Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell. 2015. 162: 1217-1228.
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E. et al., Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007. 109: 3812-3819.
Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A. et al., Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012. 72: 2746-2756.
Pucino, V., Certo, M., Bulusu, V., Cucchi, D., Goldmann, K., Pontarini, E., Haas, R. et al., Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 2019. 30: 1055-1074. e8.
Watson, M. J., Vignali, P. D. A., Mullett, S. J., Overacre-Delgoffe, A. E., Peralta, R. M., Grebinoski, S., Menk, A. V. et al., Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021. 591: 645-651.
Wang, H., Franco, F., Tsui, Y. C., Xie, X., Trefny, M. P., Zappasodi, R., Mohmood, S. R. et al., CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 2020. 21: 298-308.
Rao, D., Verburg, F., Renner, K., Peeper, D. S., Lacroix, R. and Blank, C. U., Metabolic profiles of regulatory T cells in the tumour microenvironment. Cancer Immunol. Immunother. 2021. 70: 2417-2427
Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003. 299: 1057-1061.
Li, C., Jiang, P., Wei, S., Xu, X. and Wang, J., Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer. 2020. 19: 116.
Shang, B., Liu, Y., Jiang, S. J. and Liu, Y., Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 2015. 5: 15179.
Angelin, A., Gil-de-Gómez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M. H., Wang, Z. et al., Foxp3 Reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017. 25: 1282-1293. e7.
Gerriets, V. A., Kishton, R. J., Johnson, M. O., Cohen, S., Siska, P. J., Nichols, A. G., Warmoes, M. O. et al., Foxp3 and Toll-like receptor signaling balance T reg cell anabolic metabolism for suppression. Nat. Immunol. 2016. 17: 1459-1466.
Weinberg, S. E., Singer, B. D., Steinert, E. M., Martinez, C. A., Mehta, M. M., Martínez-Reyes, I., Gao, P. et al., Chandel NS. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019. 565: 495-499.
Kishore, M., Cheung, K. C. P., Fu, H., Bonacina, F., Wang, G., Coe, D., Ward, E. J. et al., Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity. 2017. 47: 875-889. e10.
Zhou, G. and Levitsky, H. I., Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J. Immunol. 2007. 178: 2155-2162.
Moo-Young, T. A., Larson, J. W., Belt, B. A., Tan, M. C., Hawkins, W. G., Eberlein, T. J., Goedegebuure, P. S. et al., Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J. Immunother. 2009. 32: 12-21.
Stephan, S., Ludovica, B., Arnulf, H., David, F., Marion, L., Mikhail, S., Knight, A. Z. et al., T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 2008. 105: 7797-7802.
Chapman, N. M., Boothby, M. R. and Chi, H., Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 2020. 20: 55-70.
Tanimine, N., Germana, S. K., Fan, M., Hippen, K., Blazar, B. R., Markmann, J. F., Turka, L. A. et al., Differential effects of 2-deoxy-D-glucose on in vitro expanded human regulatory T cell subsets. PLoS One. 2019. 14: e0217761.
De Rosa, V., Galgani, M., Porcellini, A., Colamatteo, A., Santopaolo, M., Zuchegna, C., Romano, A. et al., Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 2015. 16: 1174-1184.
Lacroix, R., Rozeman, E. A., Kreutz, M., Renner, K. and Blank, C. U., Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol. Immunother. 2018. 67: 1331-1348.
Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G. et al., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003. 198: 1875-1886.
Decking, S. M., Bruss, C., Babl, N., Bittner, S., Klobuch, S., Thomas, S., Feuerer, M. et al., LDHB overexpression can partially overcome T cell inhibition by lactic acid. Int. J. Mol. Sci. 2022. 23: 5970.
de Oliveira, P. G., Farinon, M., Sanchez-Lopez, E., Miyamoto, S. and Guma, M., Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front. Immunol. [Internet]. 2019. 10: 1743.
Wu, H., Estrella, V., Beatty, M., Abrahams, D., El-Kenawi, A., Russell, S., Ibrahim-Hashim, A. et al., T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat. Commun. 2020. 11: 4113.
Oida, T. and Weiner, H. L., Depletion of TGF-β from fetal bovine serum. J. Immunol. Methods. 2010. 362: 195-198.
Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M. et al., Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016. 76: 1381-1390.
Rao, D., Lacroix, R., Rooker, A., Gomes, T., Stunnenberg, J. A., Valenti, M., Dimitriadis, P. et al., MeVa2.1.dOVA and MeVa2.2.dOVA: two novel BRAFV600E-driven mouse melanoma cell lines to study tumor immune resistance. Melanoma Res. 2023. 33: 12-26.
Robey, I. F. and Nesbit, L. A., Investigating mechanisms of alkalinization for reducing primary breast tumor invasion. Biomed. Res. Int. 2013. 2013: 485196.
Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F. et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007. 204: 1257-1265.
Sullivan, M. R., Danai, L. V., Lewis, C. A., Chan, S. H., Gui, D. Y., Kunchok, T., Dennstedt, E. A. et al., Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife. 2019. 8: e44235.
Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. and Powell, J. D., Anergic T cells are metabolically anergic. J. Immunol. 2009. 183: 6095-6101.
Kumagai, S., Koyama, S., Itahashi, K., Tanegashima, T., Lin, Y. T., Togashi, Y., Kamada, T. et al., Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022. 40: 201-218. e9.
Quinn, W. J. 3rd, Jiao, J., TeSlaa, T., Stadanlick, J., Wang, Z., Wang, L., Akimova, T. et al., Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 2020. 33: 108500.
Cao, Y., Rathmell, J. C. and Macintyre, A. N., Metabolic Reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS One.. 2014. 9: e104104.
Szajnik, M., Czystowska, M., Szczepanski, M. J., Mandapathil, M. and Whiteside, T. L., Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 2010. 5: e11469.
Liu, V. C., Wong, L. Y., Jang, T., Shah, A. H., Park, I., Yang, X., Zhang, Q. et al., Tumor evasion of the immune system by converting CD4+CD25− T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol. 2007. 178: 2883.
Paluskievicz, C. M., Cao, X., Abdi, R., Zheng, P., Liu, Y. and Bromberg, J. S., T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol. 2019. 10: 2453.
Uhl, F. M., Chen, S., O'Sullivan, D., Edwards-Hicks, J., Richter, G., Haring, E., Andrieux, G. et al., Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. Sci. Transl. Med. 2020. 12: eabb8969.
Maj, T., Wang, W., Crespo, J., Zhang, H., Wang, W., Wei, S., Zhao, L. et al., Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 2017. 18: 1332-1341.
Ahlmanner, F., Sundström, P., Akeus, P., Eklöf, J., Börjesson, L., Gustavsson, B., Lindskog, E. B. et al., CD39(+) regulatory T cells accumulate in colon adenocarcinomas and display markers of increased suppressive function. Oncotarget. 2018. 9: 36993-37007.
Perrot, I., Michaud, H. A., Giraudon-Paoli, M., Augier, S., Docquier, A., Gros, L., Courtois, R. et al., Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 2019. 27: 2411-2425. e9.
Arce Vargas, F., Furness, A. J. S., Solomon, I., Joshi, K., Mekkaoui, L., Lesko, M. H., Miranda Rota, E. et al., Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 2017. 46: 577-586.
Erra Díaz, F., Dantas, E., Geffner, J., Unravelling the interplay between extracellular acidosis and immune cells. Mediators Inflamm. 2018. 2018: 1218297.
Colegio, O. R., Chu, N. Q., Szabo, A. L., Chu, T., Rhebergen, A. M., Jairam, V., Cyrus, N. et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014. 513: 559-563.
Li, J., Tan, J., Martino, M. M. and Lui, K. O., Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front. Immunol. 2018. 9: 585.
Proto, J. D., Doran, A. C., Gusarova, G., Yurdagul, A. Jr., Sozen, E., Subramanian, M., Islam, M. N. et al., Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity. 2018. 49: 666-677. e6.
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P. et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013. 29: 15-21.
Anders, S., Pyl, P. T. and Huber, W., HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics.. 2015. 31: 166-169.

Auteurs

Disha Rao (D)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Johanna A Stunnenberg (JA)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Ruben Lacroix (R)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Petros Dimitriadis (P)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Joanna Kaplon (J)

Department of Clinical Chemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Fabienne Verburg (F)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Paula T van van Royen (PT)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Esmée P Hoefsmit (EP)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Kathrin Renner (K)

Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany.
Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany.

Christian U Blank (CU)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.

Daniel S Peeper (DS)

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH