Acidity-mediated induction of FoxP3
Lactic acid
Regulatory T cells
Treg metabolism
Tumor microenvironment
Journal
European journal of immunology
ISSN: 1521-4141
Titre abrégé: Eur J Immunol
Pays: Germany
ID NLM: 1273201
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
12
01
2023
received:
07
11
2022
accepted:
10
02
2023
medline:
7
6
2023
pubmed:
15
2
2023
entrez:
14
2
2023
Statut:
ppublish
Résumé
Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive functions of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown. We observed increased TGFβ-mediated induction of Forkhead box P3
Identifiants
pubmed: 36788428
doi: 10.1002/eji.202250258
doi:
Substances chimiques
Transforming Growth Factor beta
0
Transcription Factors
0
Forkhead Transcription Factors
0
FOXP3 protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2250258Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
Warburg, O., Wind, F. and Negelein, E., The metabolism of tumors in the body. J. Gen. Physiol. 1927. 8: 519-530.
Halestrap, A. P. and Price, N. T., The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 1999. 343: 281-299.
Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A., Matos, C. et al., LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016. 24: 657-671.
Gerweck, L. E. and Seetharaman, K., Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996. 56: 1194-1198.
Longo, D. L., Bartoli, A., Consolino, L., Bardini, P., Arena, F., Schwaiger, M. and Aime, S., In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res. 2016. 76: 6463-6470.
Gillies, R. J., Raghunand, N., Karczmar, G. S. and Bhujwalla, Z. M., MRI of the tumor microenvironment. J. Magn. Reson. Imaging. 2002. 16: 430-450.
Renner, K., Bruss, C., Schnell, A., Koehl, G., Becker, H. M., Fante, M., Menevse, A. N. et al., Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep. 2019. 29: 135-150. e9.
Palsson-McDermott, E. M. and O'Neill, L. A. J., The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013. 35: 965-973.
Huber, V., Camisaschi, C., Berzi, A., Ferro, S., Lugini, L., Triulzi, T., Tuccitto, A. et al., Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Vol. 43, Seminars in cancer biology, Academic Press, San Diego, CA 2017. p. 74-89.
Farr, M., Garvey, K., Bold, A. M., Kendall, M. J. and Bacon, P. A., Significance of the hydrogen ion concentration in synovial fluid in rheumatoid arthritis. Clin. Exp. Rheumatol. 1985. 3: 99-104.
Ricciardolo, F. L. M., Gaston, B. and Hunt, J., Acid stress in the pathology of asthma. J. Allergy Clin. Immunol. 2004. 113: 610-619.
Ho, P. C., Bihuniak, J. D., Macintyre, A. N., Staron, M., Liu, X., Amezquita, R., Tsui, Y. C. et al., Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell. 2015. 162: 1217-1228.
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E. et al., Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007. 109: 3812-3819.
Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A. et al., Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012. 72: 2746-2756.
Pucino, V., Certo, M., Bulusu, V., Cucchi, D., Goldmann, K., Pontarini, E., Haas, R. et al., Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 2019. 30: 1055-1074. e8.
Watson, M. J., Vignali, P. D. A., Mullett, S. J., Overacre-Delgoffe, A. E., Peralta, R. M., Grebinoski, S., Menk, A. V. et al., Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021. 591: 645-651.
Wang, H., Franco, F., Tsui, Y. C., Xie, X., Trefny, M. P., Zappasodi, R., Mohmood, S. R. et al., CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 2020. 21: 298-308.
Rao, D., Verburg, F., Renner, K., Peeper, D. S., Lacroix, R. and Blank, C. U., Metabolic profiles of regulatory T cells in the tumour microenvironment. Cancer Immunol. Immunother. 2021. 70: 2417-2427
Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003. 299: 1057-1061.
Li, C., Jiang, P., Wei, S., Xu, X. and Wang, J., Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer. 2020. 19: 116.
Shang, B., Liu, Y., Jiang, S. J. and Liu, Y., Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 2015. 5: 15179.
Angelin, A., Gil-de-Gómez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M. H., Wang, Z. et al., Foxp3 Reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017. 25: 1282-1293. e7.
Gerriets, V. A., Kishton, R. J., Johnson, M. O., Cohen, S., Siska, P. J., Nichols, A. G., Warmoes, M. O. et al., Foxp3 and Toll-like receptor signaling balance T reg cell anabolic metabolism for suppression. Nat. Immunol. 2016. 17: 1459-1466.
Weinberg, S. E., Singer, B. D., Steinert, E. M., Martinez, C. A., Mehta, M. M., Martínez-Reyes, I., Gao, P. et al., Chandel NS. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019. 565: 495-499.
Kishore, M., Cheung, K. C. P., Fu, H., Bonacina, F., Wang, G., Coe, D., Ward, E. J. et al., Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity. 2017. 47: 875-889. e10.
Zhou, G. and Levitsky, H. I., Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J. Immunol. 2007. 178: 2155-2162.
Moo-Young, T. A., Larson, J. W., Belt, B. A., Tan, M. C., Hawkins, W. G., Eberlein, T. J., Goedegebuure, P. S. et al., Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J. Immunother. 2009. 32: 12-21.
Stephan, S., Ludovica, B., Arnulf, H., David, F., Marion, L., Mikhail, S., Knight, A. Z. et al., T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 2008. 105: 7797-7802.
Chapman, N. M., Boothby, M. R. and Chi, H., Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 2020. 20: 55-70.
Tanimine, N., Germana, S. K., Fan, M., Hippen, K., Blazar, B. R., Markmann, J. F., Turka, L. A. et al., Differential effects of 2-deoxy-D-glucose on in vitro expanded human regulatory T cell subsets. PLoS One. 2019. 14: e0217761.
De Rosa, V., Galgani, M., Porcellini, A., Colamatteo, A., Santopaolo, M., Zuchegna, C., Romano, A. et al., Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 2015. 16: 1174-1184.
Lacroix, R., Rozeman, E. A., Kreutz, M., Renner, K. and Blank, C. U., Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol. Immunother. 2018. 67: 1331-1348.
Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G. et al., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003. 198: 1875-1886.
Decking, S. M., Bruss, C., Babl, N., Bittner, S., Klobuch, S., Thomas, S., Feuerer, M. et al., LDHB overexpression can partially overcome T cell inhibition by lactic acid. Int. J. Mol. Sci. 2022. 23: 5970.
de Oliveira, P. G., Farinon, M., Sanchez-Lopez, E., Miyamoto, S. and Guma, M., Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front. Immunol. [Internet]. 2019. 10: 1743.
Wu, H., Estrella, V., Beatty, M., Abrahams, D., El-Kenawi, A., Russell, S., Ibrahim-Hashim, A. et al., T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat. Commun. 2020. 11: 4113.
Oida, T. and Weiner, H. L., Depletion of TGF-β from fetal bovine serum. J. Immunol. Methods. 2010. 362: 195-198.
Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M. et al., Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016. 76: 1381-1390.
Rao, D., Lacroix, R., Rooker, A., Gomes, T., Stunnenberg, J. A., Valenti, M., Dimitriadis, P. et al., MeVa2.1.dOVA and MeVa2.2.dOVA: two novel BRAFV600E-driven mouse melanoma cell lines to study tumor immune resistance. Melanoma Res. 2023. 33: 12-26.
Robey, I. F. and Nesbit, L. A., Investigating mechanisms of alkalinization for reducing primary breast tumor invasion. Biomed. Res. Int. 2013. 2013: 485196.
Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F. et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007. 204: 1257-1265.
Sullivan, M. R., Danai, L. V., Lewis, C. A., Chan, S. H., Gui, D. Y., Kunchok, T., Dennstedt, E. A. et al., Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife. 2019. 8: e44235.
Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. and Powell, J. D., Anergic T cells are metabolically anergic. J. Immunol. 2009. 183: 6095-6101.
Kumagai, S., Koyama, S., Itahashi, K., Tanegashima, T., Lin, Y. T., Togashi, Y., Kamada, T. et al., Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022. 40: 201-218. e9.
Quinn, W. J. 3rd, Jiao, J., TeSlaa, T., Stadanlick, J., Wang, Z., Wang, L., Akimova, T. et al., Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 2020. 33: 108500.
Cao, Y., Rathmell, J. C. and Macintyre, A. N., Metabolic Reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS One.. 2014. 9: e104104.
Szajnik, M., Czystowska, M., Szczepanski, M. J., Mandapathil, M. and Whiteside, T. L., Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 2010. 5: e11469.
Liu, V. C., Wong, L. Y., Jang, T., Shah, A. H., Park, I., Yang, X., Zhang, Q. et al., Tumor evasion of the immune system by converting CD4+CD25− T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol. 2007. 178: 2883.
Paluskievicz, C. M., Cao, X., Abdi, R., Zheng, P., Liu, Y. and Bromberg, J. S., T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol. 2019. 10: 2453.
Uhl, F. M., Chen, S., O'Sullivan, D., Edwards-Hicks, J., Richter, G., Haring, E., Andrieux, G. et al., Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. Sci. Transl. Med. 2020. 12: eabb8969.
Maj, T., Wang, W., Crespo, J., Zhang, H., Wang, W., Wei, S., Zhao, L. et al., Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 2017. 18: 1332-1341.
Ahlmanner, F., Sundström, P., Akeus, P., Eklöf, J., Börjesson, L., Gustavsson, B., Lindskog, E. B. et al., CD39(+) regulatory T cells accumulate in colon adenocarcinomas and display markers of increased suppressive function. Oncotarget. 2018. 9: 36993-37007.
Perrot, I., Michaud, H. A., Giraudon-Paoli, M., Augier, S., Docquier, A., Gros, L., Courtois, R. et al., Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 2019. 27: 2411-2425. e9.
Arce Vargas, F., Furness, A. J. S., Solomon, I., Joshi, K., Mekkaoui, L., Lesko, M. H., Miranda Rota, E. et al., Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 2017. 46: 577-586.
Erra Díaz, F., Dantas, E., Geffner, J., Unravelling the interplay between extracellular acidosis and immune cells. Mediators Inflamm. 2018. 2018: 1218297.
Colegio, O. R., Chu, N. Q., Szabo, A. L., Chu, T., Rhebergen, A. M., Jairam, V., Cyrus, N. et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014. 513: 559-563.
Li, J., Tan, J., Martino, M. M. and Lui, K. O., Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front. Immunol. 2018. 9: 585.
Proto, J. D., Doran, A. C., Gusarova, G., Yurdagul, A. Jr., Sozen, E., Subramanian, M., Islam, M. N. et al., Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity. 2018. 49: 666-677. e6.
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P. et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013. 29: 15-21.
Anders, S., Pyl, P. T. and Huber, W., HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics.. 2015. 31: 166-169.