The association between vertebral endplate defects, subchondral bone marrow changes, and lumbar intervertebral disc degeneration: a retrospective, 3-year longitudinal study.


Journal

European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
ISSN: 1432-0932
Titre abrégé: Eur Spine J
Pays: Germany
ID NLM: 9301980

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 22 10 2022
accepted: 13 01 2023
revised: 22 10 2022
medline: 26 6 2023
pubmed: 12 2 2023
entrez: 11 2 2023
Statut: ppublish

Résumé

To investigate the influence of vertebral endplate defects and subchondral bone marrow changes on the development of lumbar intervertebral disc degeneration (DD). Patients > 18 y/o without any history of lumbar fusion who had repeat lumbar magnetic resonance imaging scans primarily for low back pain (LBP) performed at a minimum of 3 years apart at a single institution, and no spinal surgery in between scans were included. Total endplate score (TEPS), Modic changes (MC), and Pfirrmann grading (PFG) per lumbar disc level were assessed. DD was defined as PFG ≥ 4. Three hundred and fifty-three patients (54.4% female) were included in the final analysis, comprising 1765 lumbar intervertebral discs. The patient population was 85.6% Caucasian with a median age of 60.1 years and a body mass index (BMI) of 25.8 kg/m Our results suggest that TEPS does not unequivocally predict intervertebral DD in patients with LBP, since higher degrees of endplate defects might also develop secondarily to DD, and MC tend to occur late in the cascade of degeneration.

Identifiants

pubmed: 36773077
doi: 10.1007/s00586-023-07544-4
pii: 10.1007/s00586-023-07544-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2350-2357

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Pappou IP, Cammisa FPJ, Girardi FP (2007) Correlation of end plate shape on MRI and disc degeneration in surgically treated patients with degenerative disc disease and herniated nucleus pulposus. Spine J 7:32–38. https://doi.org/10.1016/j.spinee.2006.02.029
doi: 10.1016/j.spinee.2006.02.029 pubmed: 17197330
Adams MA, Dolan P (2012) Intervertebral disc degeneration: evidence for two distinct phenotypes. J Anat 221:497–506. https://doi.org/10.1111/j.1469-7580.2012.01551.x
doi: 10.1111/j.1469-7580.2012.01551.x pubmed: 22881295 pmcid: 3512277
Farshad-Amacker NA, Hughes AP, Aichmair A et al (2014) Determinants of evolution of endplate and disc degeneration in the lumbar spine: a multifactorial perspective. Eur Spine J 23:1863–1868. https://doi.org/10.1007/s00586-014-3382-z
doi: 10.1007/s00586-014-3382-z pubmed: 24898310
Adams MA, Lama P, Zehra U, Dolan P (2015) Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clin Anat 28:195–204. https://doi.org/10.1002/ca.22404
doi: 10.1002/ca.22404 pubmed: 24753325
Granville Smith I, Danckert NP, Freidin MB et al (2022) Evidence for infection in intervertebral disc degeneration: a systematic review. Eur Spine J 31:414–430. https://doi.org/10.1007/s00586-021-07062-1
doi: 10.1007/s00586-021-07062-1 pubmed: 34862912
Desmoulin GT, Pradhan V, Milner TE (2020) Mechanical aspects of intervertebral disc injury and implications on biomechanics. Spine 45:E457–E464. https://doi.org/10.1097/BRS.0000000000003291
doi: 10.1097/BRS.0000000000003291 pubmed: 31651681
(2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 390: 1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2
Brinjikji W, Luetmer PH, Comstock B et al (2015) Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 36:811–816. https://doi.org/10.3174/ajnr.A4173
doi: 10.3174/ajnr.A4173 pubmed: 25430861 pmcid: 4464797
Brinjikji W, Diehn FE, Jarvik JG et al (2015) MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis. AJNR Am J Neuroradiol 36:2394–2399. https://doi.org/10.3174/ajnr.A4498
doi: 10.3174/ajnr.A4498 pubmed: 26359154 pmcid: 7964277
Luoma K, Vehmas T, Kerttula L et al (2016) Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. Eur Spine J 25:2873–2881. https://doi.org/10.1007/s00586-016-4715-x
doi: 10.1007/s00586-016-4715-x pubmed: 27480265
Sääksjärvi S, Kerttula L, Luoma K et al (2020) Disc degeneration of young low back pain patients: a prospective 30-year follow-up MRI study. Spine 45:1341–1347. https://doi.org/10.1097/BRS.0000000000003548
doi: 10.1097/BRS.0000000000003548 pubmed: 32453239
Aavikko A, Lohman M, Ristolainen L et al (2022) ISSLS prize in clinical science 2022: accelerated disc degeneration after pubertal growth spurt differentiates adults with low back pain from their asymptomatic peers. Eur Spine J 31:1080–1087. https://doi.org/10.1007/s00586-022-07184-0
doi: 10.1007/s00586-022-07184-0 pubmed: 35333957
Gallucci M, Puglielli E, Splendiani A et al (2005) Degenerative disorders of the spine. Eur Radiol 15:591–598. https://doi.org/10.1007/s00330-004-2618-4
doi: 10.1007/s00330-004-2618-4 pubmed: 15627174
Rao D, Scuderi G, Scuderi C et al (2018) The use of imaging in management of patients with low back pain. J Clin Imaging Sci 8:30. https://doi.org/10.4103/jcis.JCIS_16_18
doi: 10.4103/jcis.JCIS_16_18 pubmed: 30197821 pmcid: 6118107
Pfirrmann CW, Metzdorf A, Zanetti M et al (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878. https://doi.org/10.1097/00007632-200109010-00011
doi: 10.1097/00007632-200109010-00011 pubmed: 11568697
Lotz JC, Fields AJ, Liebenberg EC (2013) The role of the vertebral end plate in low back pain. Glob Spine J 3:153–164. https://doi.org/10.1055/s-0033-1347298
doi: 10.1055/s-0033-1347298
Rajasekaran S, Venkatadass K, Naresh Babu J et al (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17:626–643. https://doi.org/10.1007/s00586-008-0645-6
doi: 10.1007/s00586-008-0645-6 pubmed: 18357472 pmcid: 2367412
Dolan P, Luo J, Pollintine P et al (2013) Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine 38:1473–1481. https://doi.org/10.1097/BRS.0b013e318290f3cc
doi: 10.1097/BRS.0b013e318290f3cc pubmed: 23486408
Farshad-Amacker NA, Hughes A, Herzog RJ et al (2017) The intervertebral disc, the endplates and the vertebral bone marrow as a unit in the process of degeneration. Eur Radiol 27:2507–2520. https://doi.org/10.1007/s00330-016-4584-z
doi: 10.1007/s00330-016-4584-z pubmed: 27709276
Chen L, Battié MC, Yuan Y et al (2020) Lumbar vertebral endplate defects on magnetic resonance images: prevalence, distribution patterns, and associations with back pain. Spine J 20:352–360. https://doi.org/10.1016/j.spinee.2019.10.015
doi: 10.1016/j.spinee.2019.10.015 pubmed: 31669615
Minetama M, Kawakami M, Teraguchi M et al (2022) Endplate defects, not the severity of spinal stenosis, contribute to low back pain in patients with lumbar spinal stenosis. Spine J 22:370–378. https://doi.org/10.1016/j.spinee.2021.09.008
doi: 10.1016/j.spinee.2021.09.008 pubmed: 34600109
Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199. https://doi.org/10.1148/radiology.166.1.3336678
doi: 10.1148/radiology.166.1.3336678 pubmed: 3336678
Munir S, Freidin MB, Rade M et al (2018) Endplate defect is heritable, associated with low back pain and triggers intervertebral disc degeneration: a longitudinal study from TwinsUK. Spine 43:1496–1501. https://doi.org/10.1097/BRS.0000000000002721
doi: 10.1097/BRS.0000000000002721 pubmed: 29847371
Mallow GM, Zepeda D, Kuzel TG et al (2022) ISSLS PRIZE in clinical science 2022: epidemiology, risk factors and clinical impact of juvenile modic changes in paediatric patients with low back pain. Eur Spine J 31:1069–1079. https://doi.org/10.1007/s00586-022-07125-x
doi: 10.1007/s00586-022-07125-x pubmed: 35129673
Rade M, Määttä JH, Freidin MB et al (2018) Vertebral endplate defect as initiating factor in intervertebral disc degeneration: strong association between endplate defect and disc degeneration in the general population. Spine 43:412–419. https://doi.org/10.1097/BRS.0000000000002352
doi: 10.1097/BRS.0000000000002352 pubmed: 28749857 pmcid: 5756623
Brennan P, Silman A (1992) Statistical methods for assessing observer variability in clinical measures. BMJ 304:1491–1494. https://doi.org/10.1136/bmj.304.6840.1491
doi: 10.1136/bmj.304.6840.1491 pubmed: 1611375 pmcid: 1882212
Farshad-Amacker NA, Hughes AP, Aichmair A et al (2014) Is an annular tear a predictor for accelerated disc degeneration? Eur Spine J 23:1825–1829. https://doi.org/10.1007/s00586-014-3260-8
doi: 10.1007/s00586-014-3260-8 pubmed: 24622958
Zehra U, Robson-Brown K, Adams MA, Dolan P (2015) Porosity and thickness of the vertebral endplate depend on local mechanical loading. Spine 40:1173–1180. https://doi.org/10.1097/BRS.0000000000000925
doi: 10.1097/BRS.0000000000000925 pubmed: 25893360
Jin L, Feng G, Reames DL et al (2013) The effects of simulated microgravity on intervertebral disc degeneration. Spine J 13:235–242. https://doi.org/10.1016/j.spinee.2012.01.022
doi: 10.1016/j.spinee.2012.01.022 pubmed: 23537452 pmcid: 3612270
Wu D, Zhou X, Zheng C et al (2019) The effects of simulated +Gz and microgravity on intervertebral disc degeneration in rabbits. Sci Rep 9:16608. https://doi.org/10.1038/s41598-019-53246-7
doi: 10.1038/s41598-019-53246-7 pubmed: 31719640 pmcid: 6851093
Bailey JF, Nyayapati P, Johnson GTA et al (2022) Biomechanical changes in the lumbar spine following spaceflight and factors associated with postspaceflight disc herniation. Spine J 22:197–206. https://doi.org/10.1016/j.spinee.2021.07.021
doi: 10.1016/j.spinee.2021.07.021 pubmed: 34343665
Su Y, Ren D, Chen Y et al (2022) Effect of endplate reduction on endplate healing morphology and intervertebral disc degeneration in patients with thoracolumbar vertebral fracture. Eur Spine J. https://doi.org/10.1007/s00586-022-07215-w
doi: 10.1007/s00586-022-07215-w pubmed: 36309875
Kuisma M, Karppinen J, Niinimäki J et al (2006) A three-year follow-up of lumbar spine endplate (modic) changes. Spine 31:1714–1718. https://doi.org/10.1097/01.brs.0000224167.18483.14
doi: 10.1097/01.brs.0000224167.18483.14 pubmed: 16816768
Hutton MJ, Bayer JH, Powell JM (2011) Modic vertebral body changes: the natural history as assessed by consecutive magnetic resonance imaging. Spine 36:2304–2307. https://doi.org/10.1097/BRS.0b013e31821604b6
doi: 10.1097/BRS.0b013e31821604b6 pubmed: 21358572
Teichtahl AJ, Finnin MA, Wang Y et al (2017) The natural history of modic changes in a community-based cohort. Jt Bone Spine 84:197–202. https://doi.org/10.1016/j.jbspin.2016.03.011
doi: 10.1016/j.jbspin.2016.03.011
Tamai H, Teraguchi M, Hashizume H et al (2022) A prospective, 3-year longitudinal study of modic changes of the lumbar spine in a population-based cohort: the wakayama spine study. Spine 47:490–497. https://doi.org/10.1097/BRS.0000000000004301
doi: 10.1097/BRS.0000000000004301 pubmed: 35213525
de Roos A, Kressel H, Spritzer C, Dalinka M (1987) MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol 149:531–534. https://doi.org/10.2214/ajr.149.3.531
doi: 10.2214/ajr.149.3.531 pubmed: 3497539
Albert HB, Briggs AM, Kent P et al (2011) The prevalence of MRI-defined spinal pathoanatomies and their association with modic changes in individuals seeking care for low back pain. Eur Spine J 20:1355–1362. https://doi.org/10.1007/s00586-011-1794-6
doi: 10.1007/s00586-011-1794-6 pubmed: 21544595 pmcid: 3175840
Mok FPS, Samartzis D, Karppinen J et al (2016) Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J 16:32–41. https://doi.org/10.1016/j.spinee.2015.09.060
doi: 10.1016/j.spinee.2015.09.060 pubmed: 26456851
Hassett G, Hart DJ, Manek NJ et al (2003) Risk factors for progression of lumbar spine disc degeneration: the Chingford study. Arthritis Rheum 48:3112–3117. https://doi.org/10.1002/art.11321
doi: 10.1002/art.11321 pubmed: 14613273
Maurer E, Klinger C, Lorbeer R et al (2020) Long-term effect of physical inactivity on thoracic and lumbar disc degeneration-an MRI-based analysis of 385 individuals from the general population. Spine J 20:1386–1396. https://doi.org/10.1016/j.spinee.2020.04.016
doi: 10.1016/j.spinee.2020.04.016 pubmed: 32360761
Udby PM, Ohrt-Nissen S, Bendix T et al (2021) The association of MRI findings and long-term disability in patients with chronic low back pain. Glob Spine J 11:633–639. https://doi.org/10.1177/2192568220921391
doi: 10.1177/2192568220921391
Salo S, Hurri H, Rikkonen T et al (2022) Association between severe lumbar disc degeneration and self-reported occupational physical loading. J Occup Health 64:e12316. https://doi.org/10.1002/1348-9585.12316
doi: 10.1002/1348-9585.12316 pubmed: 35084078 pmcid: 8793002

Auteurs

Manuel Moser (M)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.
Department of Spine Surgery, Lucerne Cantonal Hospital, Spitalstrasse, 6000, Lucerne, Switzerland.

Dominik Adl Amini (D)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.
Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Leonardo Albertini Sanchez (L)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.
Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.

Lisa Oezel (L)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.
Department of Orthopedic Surgery and Traumatology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.

Henryk Haffer (H)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.
Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Maximilian Muellner (M)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.
Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Jiaqi Zhu (J)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.

John A Carrino (JA)

Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.

Jennifer Shue (J)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.

Andrew A Sama (AA)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.

Frank P Cammisa (FP)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.

Federico P Girardi (FP)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA.

Alexander P Hughes (AP)

Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Street, New York, NY, 10021, USA. hughesa@hss.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH