Efficacy and safety of prophylaxis for venous thromboembolism in brain neoplasm patients undergoing neurosurgery: a systematic review and Bayesian network meta-analysis.
Brain neoplasm
Meta-analysis
Neurosurgery
Thromboembolism prophylaxis
Journal
Journal of thrombosis and thrombolysis
ISSN: 1573-742X
Titre abrégé: J Thromb Thrombolysis
Pays: Netherlands
ID NLM: 9502018
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
accepted:
24
01
2023
medline:
1
5
2023
pubmed:
11
2
2023
entrez:
10
2
2023
Statut:
ppublish
Résumé
Neurosurgeons often face this dilemma. Brain neoplasm patients undergoing neurosurgery are at a high risk of venous thrombosis. However, antithrombotic drugs may induce bleeding complications. Therefore, we compared the efficacy and safety of prophylaxis for venous thromboembolism (VTE) in brain neoplasm patients undergoing neurosurgery. We searched Cochrane Central Register of Controlled Trials, Ovid MEDLINE(R), and Embase from inception to January 2022 for randomized controlled trials (RCTs) comparing the prophylactic measures efficacy and safety for VTE in brain neoplasm patients undergoing neurosurgery. The main efficacy outcome was symptomatic or asymptomatic VTE. The safety outcomes included major bleeding, minor bleeding, all occurrences of bleeding, and all-cause mortality. We used (Log) odds ratio (OR) of various chemoprophylaxis regimens to judge the safety and effectiveness of VTE. Additionally, all types of intervention were ranked by the Surface Under the Cumulative Ranking (SUCRA) value. We included 10 RCTs with 1128 brain neoplasm patients undergoing neurosurgery. For symptomatic or asymptomatic VTE and proximal DVT or PE, DOACs, compared with placebo, can significantly reduce the events. DOACs were superior to all other interventions in the rank plot of these events. For major bleeding reduction, unfractionated heparin (SUCRA value = 0.21) demonstrated better safety efficacy than others. For minor bleeding reduction, DOACs had a significantly higher risk of minor bleeding compared with placebo [Log OR 16.76, 95% CrI (1.53, 61.13)], LMWH [Log OR 15.68, 95% CrI (0.26, 60.10)] and UFH [Log OR 15.93, 95% CrI (0.22, 60.16)] respectively. Except for placebo (SUCRA values of 0.13), UFH (SUCRA values of 0.37) depicted better safety efficacy than others. For all-cause mortality, we found UFH always had significantly lower all-cause mortality compared with low-molecular-weight heparin (LMWH) [Log OR = 14.17, 95% CrI (0.05, 48.35)]. UFH plus intermittent pneumatic compression (IPC) (SUCRA value of 0.12) displayed the best safety for all-cause mortality. In our study, DOACs were more effective as prophylaxis for VTE in brain neoplasm patients undergoing neurosurgery. Regarding the safety of prophylaxis for VTE, UFH of chemoprophylaxis consistently demonstrated better safety efficacy, involving either major bleeding, minor bleeding, bleeding, or all-cause mortality.
Identifiants
pubmed: 36763224
doi: 10.1007/s11239-023-02780-3
pii: 10.1007/s11239-023-02780-3
doi:
Substances chimiques
Anticoagulants
0
Heparin
9005-49-6
Heparin, Low-Molecular-Weight
0
Types de publication
Systematic Review
Meta-Analysis
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
710-720Subventions
Organisme : Key Technologies Research and Development Program
ID : 2020YFC2004706
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
White RH, Zhou H, Romano PS (2003) Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb Haemost 90(3):446–55. https://doi.org/10.1160/th03-03-0152
doi: 10.1160/th03-03-0152
pubmed: 12958614
Wong JM, Panchmatia JR, Ziewacz JE, Bader AM, Dunn IF, Laws ER et al (2012) Patterns in neurosurgical adverse events: intracranial neoplasm surgery. Neurosurg Focus 33(5):E16. https://doi.org/10.3171/2012.7.Focus12183
doi: 10.3171/2012.7.Focus12183
pubmed: 23116096
Rinaldo L, Brown DA, Bhargav AG, Rusheen AE, Naylor RM, Gilder HE et al (2019) Venous thromboembolic events in patients undergoing craniotomy for tumor resection: incidence, predictors, and review of literature. J Neurosurg 132(1):10–21. https://doi.org/10.3171/2018.7.Jns181175
doi: 10.3171/2018.7.Jns181175
pubmed: 30611138
Auguste KI, Quinones-Hinojosa A, Gadkary C, Zada G, Lamborn KR, Berger MS (2003) Incidence of venous thromboembolism in patients undergoing craniotomy and motor mapping for glioma without intraoperative mechanical prophylaxis to the contralateral leg. J Neurosurg 99(4):680–4. https://doi.org/10.3171/jns.2003.99.4.0680
doi: 10.3171/jns.2003.99.4.0680
pubmed: 14567603
Kimmell KT, Jahromi BS (2015) Clinical factors associated with venous thromboembolism risk in patients undergoing craniotomy. J Neurosurg 122(5):1004–11. https://doi.org/10.3171/2014.10.Jns14632
doi: 10.3171/2014.10.Jns14632
pubmed: 25495743
Semrad TJ, O’Donnell R, Wun T, Chew H, Harvey D, Zhou H et al (2007) Epidemiology of venous thromboembolism in 9489 patients with malignant glioma. J Neurosurg 106(4):601–8. https://doi.org/10.3171/jns.2007.106.4.601
doi: 10.3171/jns.2007.106.4.601
pubmed: 17432710
Smith TR, Lall RR, Graham RB, McClendon J Jr, Lall RR, Nanney AD et al (2014) Venous thromboembolism in high grade glioma among surgical patients: results from a single center over a 10 year period. J Neurooncol 120(2):347–52. https://doi.org/10.1007/s11060-014-1557-4
doi: 10.1007/s11060-014-1557-4
pubmed: 25062669
Rolston JD, Han SJ, Bloch O, Parsa AT (2014) What clinical factors predict the incidence of deep venous thrombosis and pulmonary embolism in neurosurgical patients? J Neurosurg 121(4):908–18. https://doi.org/10.3171/2014.6.Jns131419
doi: 10.3171/2014.6.Jns131419
pubmed: 25084467
Nyquist P, Jichici D, Bautista C, Burns J, Chhangani S, DeFilippis M et al (2017) Prophylaxis of venous thrombosis in neurocritical care patients: an executive summary of evidence-based guidelines: a statement for healthcare professionals from the neurocritical care society and society of critical care medicine. Crit Care Med 45(3):476–9. https://doi.org/10.1097/ccm.0000000000002247
doi: 10.1097/ccm.0000000000002247
pubmed: 28085682
Key NS, Khorana AA, Kuderer NM, Bohlke K, Lee AYY, Arcelus JI et al (2020) Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol 38(5):496–520. https://doi.org/10.1200/jco.19.01461
doi: 10.1200/jco.19.01461
pubmed: 31381464
Prins MH, Lensing AW, Bauersachs R, van Bellen B, Bounameaux H, Brighton TA et al (2013) Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies. Thromb J 11(1):21. https://doi.org/10.1186/1477-9560-11-21
doi: 10.1186/1477-9560-11-21
pubmed: 24053656
pmcid: 3850944
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535
doi: 10.1136/bmj.b2535
pubmed: 19622551
pmcid: 2714657
Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C et al (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162(11):777–84. https://doi.org/10.7326/m14-2385
doi: 10.7326/m14-2385
pubmed: 26030634
Schulman S, Angerås U, Bergqvist D, Eriksson B, Lassen MR, Fisher W (2010) Definition of major bleeding in clinical investigations of antihemostatic medicinal products in surgical patients. J Thromb Haemost 8(1):202–4. https://doi.org/10.1111/j.1538-7836.2009.03678.x
doi: 10.1111/j.1538-7836.2009.03678.x
pubmed: 19878532
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898
doi: 10.1136/bmj.l4898
pubmed: 31462531
Lumley T (2002) Network meta-analysis for indirect treatment comparisons. Stat Med 21(16):2313–24. https://doi.org/10.1002/sim.1201
doi: 10.1002/sim.1201
pubmed: 12210616
Salanti G, Ades AE, Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64(2):163–71. https://doi.org/10.1016/j.jclinepi.2010.03.016
doi: 10.1016/j.jclinepi.2010.03.016
pubmed: 20688472
Dias S, Welton NJ, Caldwell DM, Ades AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29(7–8):932–44. https://doi.org/10.1002/sim.3767
doi: 10.1002/sim.3767
pubmed: 20213715
Brandes AA, Scelzi E, Salmistraro G, Ermani M, Carollo C, Berti F et al (1997) Incidence and risk of thromboembolism during treatment of high-grade gliomas: a prospective study. Eur J Cancer 33(10):1592–1596. https://doi.org/10.1016/S0959-8049(97)00167-6
doi: 10.1016/S0959-8049(97)00167-6
pubmed: 9389920
Yust-Katz S, Mandel JJ, Wu J, Yuan Y, Webre C, Pawar TA et al (2015) Venous thromboembolism (VTE) and glioblastoma. J Neurooncol 124(1):87–94. https://doi.org/10.1007/s11060-015-1805-2
doi: 10.1007/s11060-015-1805-2
pubmed: 25985958
Kirschner M, do Ó Hartmann N, Parmentier S, Hart C, Henze L, Bisping G, et al (2021) Patients with malignancies: daily practice recommendations by the hemostasis working party of the German society of hematology and medical oncology (DGHO), the society of thrombosis and hemostasis research (GTH), and the Austrian society of hematology and oncology (ÖGHO). Cancers (Basel). https://doi.org/10.3390/cancers13122905
doi: 10.3390/cancers13122905
pubmed: 34638316
Browse NL, Thomas ML (1974) Source of non-lethal pulmonary emboli. Lancet 1(7851):258–9. https://doi.org/10.1016/s0140-6736(74)92559-8
doi: 10.1016/s0140-6736(74)92559-8
pubmed: 4130258
Matar CF, Kahale LA, Hakoum MB, Tsolakian IG, Etxeandia-Ikobaltzeta I, Yosuico VE et al (2018) Anticoagulation for perioperative thromboprophylaxis in people with cancer. Cochrane Database Syst Rev 7(7):CD009447. https://doi.org/10.1002/14651858.CD009447.pub3
doi: 10.1002/14651858.CD009447.pub3
pubmed: 29993117
Hager N, Bolt J, Albers L, Wojcik W, Duffy P, Semchuk W (2017) Development of left atrial thrombus after coadministration of dabigatran etexilate and phenytoin. Can J Cardiol 33(4):554.e13-e14. https://doi.org/10.1016/j.cjca.2016.10.022
doi: 10.1016/j.cjca.2016.10.022
pubmed: 28063739
Risselada AJ, Visser MJ, van Roon E (2013) Pulmonary embolism due to interaction between rivaroxaban and carbamazepine. Ned Tijdschr Geneeskd 157(52):A6568
pubmed: 24382036
Wiggins BS, Northup A, Johnson D, Senfield J (2016) Reduced anticoagulant effect of dabigatran in a patient receiving concomitant phenytoin. Pharmacotherapy 36(2):e5-7. https://doi.org/10.1002/phar.1698
doi: 10.1002/phar.1698
pubmed: 26846610
Wang X, Zhang Y, Fang F, Jia L, You C, Xu P et al (2021) Comparative efficacy and safety of pharmacological prophylaxis and intermittent pneumatic compression for prevention of venous thromboembolism in adult undergoing neurosurgery: a systematic review and network meta-analysis. Neurosurg Rev 44(2):721–9. https://doi.org/10.1007/s10143-020-01297-0
doi: 10.1007/s10143-020-01297-0
pubmed: 32300889
Alshehri N, Cote DJ, Hulou MM, Alghamdi A, Alshahrani A, Mekary RA et al (2016) Venous thromboembolism prophylaxis in brain tumor patients undergoing craniotomy: a meta-analysis. J Neurooncol 130(3):561–70. https://doi.org/10.1007/s11060-016-2259-x
doi: 10.1007/s11060-016-2259-x
pubmed: 27591773