Myeloid Phenotypes in Tracheostomy-Associated Granulation Tissue.
M2 macrophage
granulation tissue
granuloma
laryngotracheal stenosis
macrophage polarization
monocytes
tracheostomy
Journal
The Laryngoscope
ISSN: 1531-4995
Titre abrégé: Laryngoscope
Pays: United States
ID NLM: 8607378
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
revised:
08
12
2022
received:
08
04
2022
accepted:
13
12
2022
pmc-release:
01
09
2024
medline:
11
8
2023
pubmed:
13
1
2023
entrez:
12
1
2023
Statut:
ppublish
Résumé
Tracheostomy-associated granulation tissue is a common, recurrent problem occurring secondary to chronic mucosal irritation. Although granulation tissue is composed of predominantly innate immune cells, the phenotype of monocytes and macrophages in tracheostomy-associated granulation tissue is unknown. This study aims to define the myeloid cell population in granulation tissue secondary to tracheostomy. Granulation tissue biopsies were obtained from 8 patients with tracheostomy secondary to laryngotracheal stenosis. Cell type analysis was performed by flow cytometry and gene expression was measured by quantitative real-time polymerase chain reaction. These methods and immunohistochemistry were used to define the monocyte/macrophage population in granulation tissue and were compared to tracheal autopsy control specimens. Flow cytometry demonstrated macrophages (CD45+CD11b+) and monocytes (CD45+FSC M2 macrophages are the dominant macrophage phenotype in tracheostomy-associated granulation tissue. The role of this cell type in promoting ongoing inflammation warrants future investigation to identify potential treatments for granulation tissue secondary to tracheostomy. 3 Laryngoscope, 133:2346-2356, 2023.
Identifiants
pubmed: 36633350
doi: 10.1002/lary.30557
pmc: PMC10336175
mid: NIHMS1861197
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2346-2356Subventions
Organisme : NIDCD NIH HHS
ID : R01 DC018567
Pays : United States
Organisme : NIDCD NIH HHS
ID : R21 DC017225
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL146401
Pays : United States
Organisme : NIDCD NIH HHS
ID : K23 DC014082
Pays : United States
Informations de copyright
© 2023 The Authors. The Laryngoscope published by Wiley Periodicals LLC on behalf of The American Laryngological, Rhinological and Otological Society, Inc.
Références
Gupta A, Cotton RT, Rutter MJ. Pediatric suprastomal granuloma: management and treatment. Otolaryngol Head Neck Surg. 2004;131(1):21-25. https://doi.org/10.1016/J.OTOHNS.2004.02.036.
Ilan O, Gross M, Zaltzman Y, Sasson A, Marcus EL. Diagnosis and conservative management of late tracheotomy complications in chronic ventilator-dependent patients. Head Neck. 2015;37(5):716-721. https://doi.org/10.1002/HED.23665.
Kelly EA, Badi AN, Blumin JH, Poetker DM. Subacute airway obstruction caused by a suprastomal tracheal granuloma following tracheotomy in an adult. Ear Nose Throat J. 2011;90(9):E13-E15. https://doi.org/10.1177/014556131109000919.
Epstein S. Late complications of tracheostomy - PubMed. Accessed March 23, 2022. https://pubmed.ncbi.nlm.nih.gov/15807919/
Medrek SK, Lazarus DR, Zarrin-Khameh N, Mohyuddin N, Bandi V. Obstructive post-tracheotomy granulation tissue. Am J Respir Crit Care Med. 2017;196(5):e12-e13. https://doi.org/10.1164/RCCM.201703-0468IM/SUPPL_FILE/DISCLOSURES.PDF.
Brown MT, Montgomery WW. Microbiology of tracheal granulation tissue associated with silicone airway prostheses. Ann Otol Rhinol Laryngol. 1996;105(8):624-627. https://doi.org/10.1177/000348949610500807.
Mazhar K, Gunawardana M, Webster P, et al. Bacterial biofilms and increased bacterial counts are associated with airway stenosis. Otolaryngol - Head Neck Surg (United States). 2014;150(5):834-840. https://doi.org/10.1177/0194599814522765.
Williams O, Fatima S. Granuloma. StatPearls; 2021 Accessed March 11, 2022. https://www.ncbi.nlm.nih.gov/books/NBK554586/.
Treatment of Tracheostomy Granulomas - Study Results. Accessed March 11, 2022. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/results/NCT02116608
McShane DB, Bellet JS. Treatment of hypergranulation tissue with high potency topical corticosteroids in children. Pediatr Dermatol. 2012;29(5):675-678. https://doi.org/10.1111/J.1525-1470.2012.01724.X.
Chen C, Bent JP, Parikh SR. Powered debridement of suprastomal granulation tissue to facilitate pediatric tracheotomy decannulation. Int J Pediatr Otorhinolaryngol. 2011;75(12):1558-1561. https://doi.org/10.1016/J.IJPORL.2011.09.007.
C P. Interposition cartilage graft laryngotracheoplasty. Ann Otol Rhinol Laryngol. 2012;97:128-130.
Grillo HC. Development of tracheal surgery: a historical review. Part 1: techniques of tracheal surgery. Ann Thorac Surg. 2003;75(2):610-619. https://doi.org/10.1016/S0003-4975(02)04108-5.
Matt BH, Myer CM, Harrison CJ, Reising SF, Cotton RT. Tracheal granulation tissue: a study of bacteriology. Arch Otolaryngol Neck Surg. 1991;117(5):538-541. https://doi.org/10.1001/ARCHOTOL.1991.01870170084019.
Knöß M, Krukemeyer MG, Gehrke T, et al. Differential diagnosis of rheumatoid granuloma. Pathologe. 2006;27(6):409-415. https://doi.org/10.1007/S00292-006-0865-7.
Pagán AJ, Ramakrishnan L. Immunity and immunopathology in the tuberculous granuloma. Cold Spring Harb Perspect Med. 2015;5(9):1. https://doi.org/10.1101/CSHPERSPECT.A018499.
Baughman RP, Teirstein AS, Judson MA, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1885-1889. https://doi.org/10.1164/AJRCCM.164.10.2104046.
Shamaei M, Mortaz E, Pourabdollah M, et al. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: a new aspect of macrophage heterogeneity. Hum Immunol. 2018;79(1):63-69. https://doi.org/10.1016/J.HUMIMM.2017.10.009.
De Santis M, Locati M, Selmi C. The elegance of a macrophage. Cell Mol Immunol. 2017;15:196-198. https://doi.org/10.1038/cmi.2017.64.
Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(Lps+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10(MAY):1084. https://doi.org/10.3389/FIMMU.2019.01084/BIBTEX.
Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583-594. https://doi.org/10.1038/NRI1412.
Reichard A, Asosingh K. Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry A. 2019;95(2):219-226. https://doi.org/10.1002/CYTO.A.23690.
Karasawa K, Asano K, Moriyama S, et al. Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemia-reperfusion injury. Am Soc NephrolSign. 2015;26:896-906. https://doi.org/10.1681/ASN.2014020195.
Gupta P, Lai SM, Sheng J, et al. Tissue-resident CD169 + macrophages form a crucial front line against plasmodium infection. Cell Rep. 2016;16(6):1749-1761. Accessed September 27, 2022. https://www.academia.edu/80493325/Tissue_Resident_CD169_Macrophages_Form_a_Crucial_Front_Line_against_Plasmodium_Infection.
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Denis Alexander H, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9(APR):1-28. https://doi.org/10.3389/FIMMU.2018.00586/FULL.
Goren I, Müller E, Schiefelbein D, et al. Systemic anti-TNFα treatment restores diabetes-impaired skin repair in Ob/Ob mice by inactivation of macrophages. ElsevierSign in. 2007;127(9):2259-2267. Accessed March 30, 2022. https://www.sciencedirect.com/science/article/pii/S0022202X15335727.
Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006;23(6):594-608. https://doi.org/10.1111/J.1464-5491.2006.01773.X.
Kim MG, Kim SC, Ko YS, Lee HY, Jo SK, Cho W. The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PLoS One. 2015;10(12):e0143961. https://doi.org/10.1371/JOURNAL.PONE.0143961.
Motz K, Lina I, Murphy MK, et al. M2 macrophages promote collagen expression and synthesis in laryngotracheal stenosis fibroblasts. Laryngoscope. 2021;131(2):E346-E353. https://doi.org/10.1002/LARY.28980.
Hillel AT, Samad I, Ma G, et al. Dysregulated macrophages are present in bleomycin-induced murine laryngotracheal stenosis. Otolaryngol Head Neck Surg. 2015;153(2):244-250. https://doi.org/10.1177/0194599815589106.
Ginhoux F, Immunology SJ-NR. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;2014:392-404. https://doi.org/10.1038/nri3671.
Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol. 2016;17(1):2-8. https://doi.org/10.1038/NI.3341.
Wu Y, Hirschi KK. Tissue-resident macrophage development and function. Front Cell Dev Biol. 2020;8:617879. https://doi.org/10.3389/FCELL.2020.617879.
Strömvall K, Sundkvist K, Ljungberg B, Bergström SH, Bergh A. Reduced number of CD169+ macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate. 2017;77(15):1468-1477. https://doi.org/10.1002/pros.23407.
Asano K, Takahashi N, Ushiki M, et al. Intestinal CD169 + macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. Nat Commun. 2015;6:6. https://doi.org/10.1038/NCOMMS8802.
Ohnishi K, Komohara Y, Saito Y, et al. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci. 2013;104(9):1237-1244. https://doi.org/10.1111/CAS.12212.
Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Front Immunol. 2015;6(MAY):1-15. https://doi.org/10.3389/FIMMU.2015.00263/FULL.
Tak T, Drylewicz J, Conemans L, et al. Circulatory and maturation kinetics of human monocyte subsets in vivo. Blood. 2017;130(12):1474-1477. https://doi.org/10.1182/BLOOD-2017-03-771261.
Lee J, Tam H, Adler L, Ilstad-Minnihan A, Macaubas C, Mellins ED. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS One. 2017;12(8):e0183594. https://doi.org/10.1371/JOURNAL.PONE.0183594.
Wong KL, Tai JJY, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16-e31. https://doi.org/10.1182/BLOOD-2010-12-326355.
Rossol M, Kraus S, Pierer M, Baerwald C, Wagner U. The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum. 2012;64(3):671-677. https://doi.org/10.1002/ART.33418.
Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J. 2011;32(1):84-92. https://doi.org/10.1093/EURHEARTJ/EHQ371.
Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. Front Immunol. 2018;9(JUN):1298. https://doi.org/10.3389/FIMMU.2018.01298/BIBTEX.
Araki K, Kinoshita R, Tomonobu N, et al. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J Mol Med (Berl). 2021;99(1):131-145. https://doi.org/10.1007/S00109-020-02001-X.
Tammaro A, Florquin S, Brok M, et al. S100A8/A9 promotes parenchymal damage and renal fibrosis in obstructive nephropathy. Clin Exp Immunol. 2018;193(3):361-375. https://doi.org/10.1111/CEI.13154.
Kang KY, Woo JW, Park SH. S100A8/A9 as a biomarker for synovial inflammation and joint damage in patients with rheumatoid arthritis. Korean J Intern Med. 2014;29(1):12-19. https://doi.org/10.3904/KJIM.2014.29.1.12.
Cremers NAJ, van den Bosch MHJ, van Dalen S, et al. S100A8/A9 increases the mobilization of pro-inflammatory Ly6Chigh monocytes to the synovium during experimental osteoarthritis. Arthritis Res Ther. 2017;19(1):1-15. https://doi.org/10.1186/S13075-017-1426-6/FIGURES/4.
Crowe LAN, McLean M, Kitson SM, et al. S100A8 & S100A9: alarmin mediated inflammation in tendinopathy. Sci Report. 2019;9(1):1-12. https://doi.org/10.1038/s41598-018-37684-3.
Rheum A, Schelbergen RF, Blom AB, et al. Alarmins S100A8 and S100A9 stimulate production of pro-inflammatory cytokines in M2 macrophages without changing their M2 membrane phenotype. Ann Rheum Dis. 2012;71(Suppl 1):A76. https://doi.org/10.1136/ANNRHEUMDIS-2011-201238.10.
Petrilli V, Papin S, Biology JT-C, 2005 undefined. The inflammasome. Cell.comSign in. Accessed September 25, 2022. https://www.cell.com/current-biology/pdf/S0960-9822(05)00832-8.pdf
Vocal Fold Granulomas: A Case Series. Accessed May 26, 2022. https://www.alliedacademies.org/articles/vocal-fold-granulomas-a-case-series-9720.html
Djukić V, Krejović-Trivić S, Vukašinović M, et al. Laryngeal granuloma - benefit in treatment with zinc supplementation? J Med Biochem. 2015;34(2):228-232. https://doi.org/10.2478/JOMB-2014-0028.
Yumoto E, Sanuki T, Miyamaru S, Kumai Y. Does subepithelial hemorrhage cause persistence of laryngeal granuloma? Laryngoscope. 2008;118(5):932-937. https://doi.org/10.1097/MLG.0B013E318163819B.
Hayashi H, Sakai T. Biological significance of local TGF-β activation in liver diseases. Front Physiol. 2012;3(FEB):12. https://doi.org/10.3389/FPHYS.2012.00012/BIBTEX.
Yang Y, Guo Z, Chen W, et al. Supplemental Information M2 Macrophage-Derived Exosomes Promote Angiogenesis and Growth of Pancreatic Ductal Adenocarcinoma by Targeting E2F2. 29.
Alhajj M, Bansal P, Goyal A. Physiology, Granulation Tissue. StatPearls; 2021 Accessed May 26, 2022. https://www.ncbi.nlm.nih.gov/books/NBK554402/.
Xi Z, Jones PS, Mikamoto M, et al. The upregulation of molecules related to tumor immune escape in human pituitary adenomas. Front Endocrinol (Lausanne). 2021;12:1175. https://doi.org/10.3389/FENDO.2021.726448/BIBTEX.
Alegre F, Martí-Rodrigo A, Polo M, et al. Macrophages modulate hepatic injury involving NLRP3 inflammasome: the example of efavirenz. Biomedicine. 2022;10(1). https://doi.org/10.3390/BIOMEDICINES10010109.
Trabanelli S, Ercolano G, Wyss T, et al. c-Maf enforces cytokine production and promotes memory-like responses in mouse and human type 2 innate lymphoid cells. EMBO J. 2022;41:e109300. https://doi.org/10.15252/EMBJ.2021109300.
Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. Non-cell autonomous tumor-growth driving supports sub-clonal heterogeneity. Nature. 2014;514(7520):54-58. https://doi.org/10.1038/NATURE13556.
Liu XF, Xiang L, Zhou Q, et al. Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis. Proc Natl Acad Sci U S A. 2016;113(38):10666-10671. https://doi.org/10.1073/PNAS.1611481113.
Zhao CG, He XJ, Lu B, Li HP, Kang AJ. Increased expression of collagens, transforming growth factor-β1, and -β3 in gluteal muscle contracture. BMC Musculoskelet Disord. 2010;11(1):1-8. https://doi.org/10.1186/1471-2474-11-15.