Bone-targeting polyphosphodiesters that promote osteoblastic differentiation.
bone-targeting
osteoblast
osteoblastic differentiation
polyphosphoester
Journal
Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
revised:
15
12
2022
received:
26
09
2022
accepted:
30
12
2022
pubmed:
10
1
2023
medline:
22
3
2023
entrez:
9
1
2023
Statut:
ppublish
Résumé
Polymers for pharmaceutical use have been attractive in medical treatments because of the conjugation of multifunctional components and their long circulation time in the blood stream. Bone-targeted drug delivery systems are also no exceptional, and several polymers have been proposed for the treatment of bone diseases, such as cancer metastasis and osteoporosis. Herein, we report that polyphosphodiesters (PPDEs) have a potential to enhance osteoblastic differentiation, and they have a targeting ability to bone tissues in vivo. Two types of PPDEs, poly (ethylene sodium phosphate) (PEP•Na) and poly (propylene sodium phosphate) (PPP•Na), have been synthesized. Regardless of the alkylene structure in the main chain of PPDEs, the gene expression of osteoblast-specific transcription factors and differentiation markers of mouse osteoblastic-like cells (MC3T3-E1 cells) cultured in a differentiation medium was significantly upregulated by the addition of PPDEs. Moreover, it was also clarified that the signaling pathway related to cytoplasmic calcium ions was activated by PPDEs. The mineralization of MC3T3-E1 cells has a similar trend with its gene expression and is synergistically enhanced by PPDEs with β-glycerophosphate. The biodistribution of fluorescence-labeled PPDEs was also determined after intravenous injection in mice. PPDEs accumulated well in the bone through the blood stream, whereas polyphosphotriesters (PPTEs) tended to be excreted from the kidneys. Hydrophilic PEP•Na showed a superior bone affinity as compared with PPP•Na. PPDEs could be candidate polymers for the restoration of bone remodeling and bone-targeting drug delivery platforms.
Substances chimiques
sodium phosphate
SE337SVY37
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
714-724Subventions
Organisme : Japan Society for the Promotion of Science
ID : #19H04474
Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Ishibashi H. Locomotive syndrome in Japan. Osteoporo Sarcopenia. 2018;4:86-94.
Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol. 2015;11:462-474.
Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385-396.
Al-Bari AA, Al Mamun A. Current advances in regulation of bone homeostasis. FASEB Bio Adv. 2020;2:668-679.
Seeman E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci. 2013;68:1218-1225.
Langdahl BL. Overview of treatment approaches to osteoporosis. Br J Pharmacol. 2021;178:1891-1906.
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377:1276-1287.
Tanaka S. Molecular understanding of pharmacological treatment of osteoporosis. EFORT Open Rev. 2019;4:158-164.
Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet. 2022;399:1080-1092.
Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39:19-26.
Ikeda K, Takeshita S. The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem. 2016;159:1-8.
Jensen PR, Andersen TL, Chavassieux P, Roux JP, Delaisse JM. Bisphosphonates impair the onset of bone formation at remodeling sites. Bone. 2021;145:115850.
Papapetrou PD. Bisphosphonate-associated adverse events. Hormones. 2009;8:96-110.
Cosman F, Dempster DW. Anabolic agents for postmenopausal osteoporosis: how do you choose? Curr Osteoporos Rep. 2021;19:189-205.
Fixen C, Tunoa J. Romosozumab: a review of efficacy, safety, and cardiovascular risk. Curr Osteoporos Rep. 2021;19:15-22.
Penczek S. Models of Biopolymers by Ring-Opening Polymerization. CRC Press; 1990:291-378.
Monge S, Canniccioni B, Graillot A, Robin J-J. Phosphorus-containing polymers: a great opportunity for the biomedical field. Biomacromolecules. 2011;12:1973-1982.
Steinbach T, Wurm FR. Poly (phosphoester)s: a new platform for degradable polymers. Angew Chem Int Ed. 2015;54:6098-6108.
Bauer KN, Tee HT, Velencoso MM, Wurm FR. Main-chain poly (phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications. Prog Polym Sci. 2017;73:61-122.
Iwasaki Y. Bone mineral affinity of polyphosphodiesters. Molecules. 2020;25:758.
Iwasaki Y, Katayama K, Yoshida M, Yamamoto M, Tabata Y. Comparative physicochemical properties and cytotoxicity of polyphosphoester ionomers with bisphosphonates. J Biomater Sci Polym Ed. 2013;24:882-895.
Yang J, Kopeček J. Macromolecular therapeutics. J Control Release. 2014;190:288-303.
Low SA, Kopeček J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64:1189-1204.
Zhou X, Cornel EJ, Fan Z, He S, Du J. Bone-targeting polymer vesicles for effective therapy of osteoporosis. Nano Lett. 2021;21:7998-8007.
Otaka A, Yamaguchi T, Saisho R, Hiraga T, Iwasaki Y. Bone-targeting phospholipid polymers to solubilize the lipophilic anticancer drug. J Biomed Mater Res A. 2020;108:2090-2099.
Baran J, Penczek S. Hydrolysis of polyesters of phosphoric acid. 1. Kinetics and the pH profile. Macromolecules. 1995;28:5167-5176.
Bauer KN, Liu L, Wagner M, Andrienko D, Wurm FR. Mechanistic study on the hydrolytic degradation of polyphosphates. Eur Polym J. 2018;108:286-294.
Kalużyński K, Libiszowski J, Penczek S. A new class of synthetic polyelectrolytes. Acidic polyesters of phosphoric acid (poly [hydroxyalkylene phosphates]). Macromolecules. 1976;9:365-367.
Iwasaki Y, Kawakita T, Yusa S-I. Thermoresponsive polyphosphoesters bearing enzyme-cleavable side chains. Chem Lett. 2009;38:1054-1055.
Zhang S, Wang H, Shen Y, et al. A simple and efficient synthesis of an acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and transformation to polyphosphoester ionomers by acid treatment. Macromolecules. 2013;46:5141-5149.
Dera R, Diliën H, Adriaensens P, Guedens W, Cleij TJ. An efficient thermal elimination pathway toward phosphodiester hydrogels via a precursor approach. Macromol Chem Phys. 2020;221:1-8.
Kootala S, Tokunaga M, Hilborn J, Iwasaki Y. Anti-resorptive functions of poly (ethylene sodium phosphate) on human osteoclasts. Macromol Biosci. 2015;15:1634-1640.
Otaka A, Kiyono K, Iwasaki Y. Enhancement of osteoblast differentiation using poly (ethylene sodium phosphate). Materialia. 2021;15:100977.
Iwasaki Y, Yokota A, Otaka A, et al. Bone-targeting poly (ethylene sodium phosphate). Biomater Sci. 2018;6:91-95.
Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006;99:1233-1239.
Rossi M, Battafarano G, De Martino V, Scillitani A, Minisola S, Del Fattore A. Looking for new anabolic treatment from rare diseases of bone formation. J Endocrinol. 2021;248:R29-R40.
Miron RJ, Zhang YF. Osteoinduction: a review of old concepts with new standards. J Dent Res. 2012;91:736-744.
Iwasaki Y, Yamaguchi E. Synthesis of well-defined thermoresponsive polyphosphoester macroinitiators using organocatalysts. Macromolecules. 2010;43:2664-2666.
Malliappan SP, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: anionic polysaccharides as promising scaffolds. Carbohydr Polym. 2022;283:119142.
Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992;7:683-692.
Beck GR, Zerler B, Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci U S A. 2000;97:8352-8357.
Toda H, Yamamoto M, Uyama H, Tabata Y. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture. Acta Biomater. 2016;29:215-227.
Liu L, Miao Y, Shi X, Gao H, Wang Y. Phosphorylated chitosan hydrogels inducing osteogenic differentiation of osteoblasts via JNK and p 38 signaling pathways. ACS Biomater Sci Eng. 2020;6:1500-1509.
Pelosi C, Tinè MR, Wurm FR. Main-chain water-soluble polyphosphoesters: multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur Polym J. 2020;141:110079.
Ikeuchi R, Iwasaki Y. High mineral affinity of polyphosphoester ionomer-phospholipid vesicles. J Biomed Mater Res A. 2013;101:318-325.
Liu Z, Dong L, Wang L, et al. Mediation of cellular osteogenic differentiation through daily stimulation time based on polypyrrole planar electrodes. Sci Rep. 2017;7:1-10.
Boonrungsiman S, Gentleman E, Carzaniga R, et al. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A. 2012;109:14170-14175.
Wang L, Li S-Y, Jiang W, et al. Polyphosphoestered nanomedicines with tunable surface hydrophilicity for cancer drug delivery. ACS Appl Mater Interfaces. 2020;12:32312-32320.