Tumor immune microenvironment and systemic response in breast cancer.
Biomarker
Gut microbiome
Immunotherapy
Tumor immune microenvironment
Journal
Medical oncology (Northwood, London, England)
ISSN: 1559-131X
Titre abrégé: Med Oncol
Pays: United States
ID NLM: 9435512
Informations de publication
Date de publication:
29 Sep 2022
29 Sep 2022
Historique:
received:
03
04
2022
accepted:
24
06
2022
entrez:
29
9
2022
pubmed:
30
9
2022
medline:
4
10
2022
Statut:
epublish
Résumé
Cancer immunotherapies, particularly immune checkpoint inhibitors (ICIs) that target programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 (PD-L1), have revolutionized cancer treatment. ICIs are effective against breast cancer, and their efficacy against triple-negative breast cancer (TNBC) has been reported. The efficacy of immunotherapy is related to the tumor immune microenvironment. In particular, tumor-infiltrating immune cells, hypoxia, and mitochondria in the tumor microenvironment are closely associated with anti-tumor immunity. Moreover, breast cancer (BC) tumors exhibit high heterogeneity; however, identification of effective biomarkers, via tissue biopsies, is limited owing to the invasiveness of the procedure. Therefore, it is crucial to develop non-invasive protocols (e.g., blood and fecal sampling) to identify components of the tumor immune microenvironment that reflect the systemic immune response, for the characterization of immunotherapy biomarkers. Herein, we review the relationship among systemic immune responses-via liquid biopsy analysis-the microbiome, and the tumor immune microenvironment in BC, while characterizing prospective biomarkers. Relationship between TIME and systemic response in breast cancer.
Identifiants
pubmed: 36175677
doi: 10.1007/s12032-022-01782-0
pii: 10.1007/s12032-022-01782-0
doi:
Substances chimiques
B7-H1 Antigen
0
Immune Checkpoint Inhibitors
0
Ligands
0
Programmed Cell Death 1 Receptor
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
208Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. https://doi.org/10.1056/NEJMoa1302369 .
doi: 10.1056/NEJMoa1302369
pubmed: 23724867
pmcid: 5698004
Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. https://doi.org/10.1056/NEJMoa1414428 .
doi: 10.1056/NEJMoa1414428
pubmed: 25891304
pmcid: 5744258
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21. https://doi.org/10.1056/NEJMoa1809615 .
doi: 10.1056/NEJMoa1809615
pubmed: 30345906
Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. https://doi.org/10.1016/S0140-6736(20)32531-9 .
doi: 10.1016/S0140-6736(20)32531-9
pubmed: 33278935
Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–21. https://doi.org/10.1056/nejmoa1910549 .
doi: 10.1056/nejmoa1910549
pubmed: 32101663
Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet. 2020;396(10257):1090–100. https://doi.org/10.1016/S0140-6736(20)31953-X .
doi: 10.1016/S0140-6736(20)31953-X
pubmed: 32966830
Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med (Lausanne). 2017;4:227. https://doi.org/10.3389/fmed.2017.00227 .
doi: 10.3389/fmed.2017.00227
Rugo HS, Loi S, Adams S, Schmid P, Schneeweiss A, Barrios CH, et al. PD-L1 immunohistochemistry assay comparison in atezolizumab plus nab-paclitaxel-treated advanced triple-negative breast cancer. J Natl Cancer Inst. 2021. https://doi.org/10.1093/jnci/djab108 .
doi: 10.1093/jnci/djab108
pubmed: 34097070
pmcid: 8634452
Wu TD, Madireddi S, de Almeida PE, Banchereau R, Chen YJ, Chitre AS, et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature. 2020;579(7798):274–8. https://doi.org/10.1038/s41586-020-2056-8 .
doi: 10.1038/s41586-020-2056-8
pubmed: 32103181
Kawaguchi K, Suzuki E, Yamaguchi A, Yamamoto M, Morita S, Toi M. Altered expression of major immune regulatory molecules in peripheral blood immune cells associated with breast cancer. Breast Cancer. 2017;24(1):111–20. https://doi.org/10.1007/s12282-016-0682-7 .
doi: 10.1007/s12282-016-0682-7
pubmed: 26942414
Guan H, Wan Y, Lan J, Wang Q, Wang Z, Li Y, et al. PD-L1 is a critical mediator of regulatory B cells and T cells in invasive breast cancer. Sci Rep. 2016;6:35651. https://doi.org/10.1038/srep35651 .
doi: 10.1038/srep35651
pubmed: 27762298
pmcid: 5071845
Sceneay J, Goreczny GJ, Wilson K, Morrow S, DeCristo MJ, Ubellacker JM, et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 2019;9(9):1208–27. https://doi.org/10.1158/2159-8290.CD-18-1454 .
doi: 10.1158/2159-8290.CD-18-1454
pubmed: 31217296
Kawaguchi K, Sakurai M, Yamamoto Y, Suzuki E, Tsuda M, Kataoka TR, et al. Alteration of specific cytokine expression patterns in patients with breast cancer. Sci Rep. 2019;9(1):2924. https://doi.org/10.1038/s41598-019-39476-9 .
doi: 10.1038/s41598-019-39476-9
pubmed: 30814616
pmcid: 6393524
Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30(6):925–39. https://doi.org/10.1016/j.ccell.2016.10.010 .
doi: 10.1016/j.ccell.2016.10.010
pubmed: 27866850
pmcid: 5171205
Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 2017;7(7):675–93. https://doi.org/10.1158/2159-8290.CD-17-0226 .
doi: 10.1158/2159-8290.CD-17-0226
pubmed: 28630051
pmcid: 5659200
de Boo L, Cimino-Mathews A, Lubeck Y, Daletzakis A, Opdam M, Sanders J, et al. Tumour-infiltrating lymphocytes (TILs) and BRCA-like status in stage III breast cancer patients randomised to adjuvant intensified platinum-based chemotherapy versus conventional chemotherapy. Eur J Cancer. 2020;127:240–50. https://doi.org/10.1016/j.ejca.2019.12.003 .
doi: 10.1016/j.ejca.2019.12.003
pubmed: 31956037
Grandal B, Evrevin C, Laas E, Jardin I, Rozette S, Laot L, et al. Impact of BRCA mutation status on tumor infiltrating lymphocytes (TILs), response to treatment, and prognosis in breast cancer patients treated with neoadjuvant chemotherapy. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12123681 .
doi: 10.3390/cancers12123681
Alva AS, Mangat PK, Garrett-Mayer E, Halabi S, Hansra D, Calfa CJ, et al. Pembrolizumab in patients with metastatic breast cancer with high tumor mutational burden: results from the targeted agent and profiling utilization registry (TAPUR) study. J Clin Oncol. 2021;39(22):2443–51. https://doi.org/10.1200/JCO.20.02923 .
doi: 10.1200/JCO.20.02923
pubmed: 33844595
Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31(2):172–9. https://doi.org/10.1016/j.ccell.2017.01.002 .
doi: 10.1016/j.ccell.2017.01.002
pubmed: 28196593
Barroso-Sousa R, Keenan TE, Pernas S, Exman P, Jain E, Garrido-Castro AC, et al. Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin Cancer Res. 2020;26(11):2565–72. https://doi.org/10.1158/1078-0432.CCR-19-3507 .
doi: 10.1158/1078-0432.CCR-19-3507
pubmed: 32019858
pmcid: 7269810
Karn T, Denkert C, Weber KE, Holtrich U, Hanusch C, Sinn BV, et al. Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann Oncol. 2020;31(9):1216–22. https://doi.org/10.1016/j.annonc.2020.05.015 .
doi: 10.1016/j.annonc.2020.05.015
pubmed: 32461104
Scherer F. Capturing tumor heterogeneity and clonal evolution by circulating tumor DNA profiling. Recent Results Cancer Res. 2020;215:213–30. https://doi.org/10.1007/978-3-030-26439-0_11 .
doi: 10.1007/978-3-030-26439-0_11
pubmed: 31605231
Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Guideline Breast cancer Version 2. 2022. © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. To view the most recent and complete version of the guideline, go online to NCCN.org .
Wang X, Li M. Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol. 2019;20(1):4. https://doi.org/10.1186/s12865-018-0285-5 .
doi: 10.1186/s12865-018-0285-5
pubmed: 30634925
pmcid: 6329192
McGrail DJ, Pilie PG, Rashid NU, Voorwerk L, Slagter M, Kok M, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021;32(5):661–72. https://doi.org/10.1016/j.annonc.2021.02.006 .
doi: 10.1016/j.annonc.2021.02.006
pubmed: 33736924
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7. https://doi.org/10.1126/science.aan3706 .
doi: 10.1126/science.aan3706
pubmed: 29097494
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. https://doi.org/10.1126/science.aan4236 .
doi: 10.1126/science.aan4236
pubmed: 29097493
Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin J-M, Morrison RM, et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602. https://doi.org/10.1126/science.abf3363 .
doi: 10.1126/science.abf3363
pubmed: 33542131
pmcid: 8097968
Di Modica M, Gargari G, Regondi V, Bonizzi A, Arioli S, Belmonte B, et al. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 2021;81(8):2195–206. https://doi.org/10.1158/0008-5472.CAN-20-1659 .
doi: 10.1158/0008-5472.CAN-20-1659
pubmed: 33483370
Leeming ER, Johnson AJ, Spector TD, Le Roy CI. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients. 2019. https://doi.org/10.3390/nu11122862 .
doi: 10.3390/nu11122862
pubmed: 31766592
pmcid: 6950569
Kado T, Nawaz A, Takikawa A, Usui I, Tobe K. Linkage of CD8(+) T cell exhaustion with high-fat diet-induced tumourigenesis. Sci Rep. 2019;9(1):12284. https://doi.org/10.1038/s41598-019-48678-0 .
doi: 10.1038/s41598-019-48678-0
pubmed: 31439906
pmcid: 6706391
Gomes-Santos IL, Amoozgar Z, Kumar AS, Ho WW, Roh K, Talele NP, et al. Exercise training improves tumor control by increasing CD8(+) T-cell infiltration via CXCR3 signaling and sensitizes breast cancer to immune checkpoint blockade. Cancer Immunol Res. 2021;9(7):765–78. https://doi.org/10.1158/2326-6066.CIR-20-0499 .
doi: 10.1158/2326-6066.CIR-20-0499
pubmed: 33839688
pmcid: 8295193
Abou Khouzam R, Brodaczewska K, Filipiak A, Zeinelabdin NA, Buart S, Szczylik C, et al. Tumor hypoxia regulates immune escape/invasion: influence on angiogenesis and potential impact of hypoxic biomarkers on cancer therapies. Front Immunol. 2020;11: 613114. https://doi.org/10.3389/fimmu.2020.613114 .
doi: 10.3389/fimmu.2020.613114
pubmed: 33552076
Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 2011;475(7355):226–30. https://doi.org/10.1038/nature10169 .
doi: 10.1038/nature10169
pubmed: 21753853
Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146(5):772–84. https://doi.org/10.1016/j.cell.2011.07.033 .
doi: 10.1016/j.cell.2011.07.033
pubmed: 21871655
pmcid: 3387678
Alberts E, Wall I, Calado DP, Grigoriadis A. Immune crosstalk between lymph nodes and breast carcinomas, with a focus on B cells. Front Mol Biosci. 2021;8: 673051. https://doi.org/10.3389/fmolb.2021.673051 .
doi: 10.3389/fmolb.2021.673051
pubmed: 34124156
pmcid: 8194071
Cho SH, Raybuck AL, Blagih J, Kemboi E, Haase VH, Jones RG, et al. Hypoxia-inducible factors in CD4(+) T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity. Proc Natl Acad Sci USA. 2019;116(18):8975–84. https://doi.org/10.1073/pnas.1811702116 .
doi: 10.1073/pnas.1811702116
pubmed: 30988188
pmcid: 6500120
Feng YY, Tang M, Suzuki M, Gunasekara C, Anbe Y, Hiraoka Y, et al. Essential role of NADPH oxidase-dependent production of reactive oxygen species in maintenance of sustained B cell receptor signaling and B cell proliferation. J Immunol. 2019;202(9):2546–57. https://doi.org/10.4049/jimmunol.1800443 .
doi: 10.4049/jimmunol.1800443
pubmed: 30867238
Bannoud N, Dalotto-Moreno T, Kindgard L, Garcia PA, Blidner AG, Marino KV, et al. Hypoxia supports differentiation of terminally exhausted CD8 T cells. Front Immunol. 2021;12: 660944. https://doi.org/10.3389/fimmu.2021.660944 .
doi: 10.3389/fimmu.2021.660944
pubmed: 34025660
pmcid: 8137905
Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 2010;70(19):7465–75. https://doi.org/10.1158/0008-5472.CAN-10-1439 .
doi: 10.1158/0008-5472.CAN-10-1439
pubmed: 20841473
pmcid: 2948598
Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 2018;24(7):986–93. https://doi.org/10.1038/s41591-018-0078-7 .
doi: 10.1038/s41591-018-0078-7
pubmed: 29942092
Hasan F, Chiu Y, Shaw RM, Wang J, Yee C. Hypoxia acts as an environmental cue for the human tissue-resident memory T cell differentiation program. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.138970 .
doi: 10.1172/jci.insight.138970
pubmed: 34027895
pmcid: 8262358
Miar A, Arnaiz E, Bridges E, Beedie S, Cribbs AP, Downes DJ, et al. Hypoxia induces transcriptional and translational downregulation of the type I IFN pathway in multiple cancer cell types. Cancer Res. 2020;80(23):5245–56. https://doi.org/10.1158/0008-5472.CAN-19-2306 .
doi: 10.1158/0008-5472.CAN-19-2306
pubmed: 33115807
pmcid: 7611234
Nisar MA, Zheng Q, Saleem MZ, Ahmmed B, Ramzan MN, Ud Din SR, et al. IL-1beta promotes vasculogenic mimicry of breast cancer cells through p38/MAPK and PI3K/Akt signaling pathways. Front Oncol. 2021;11: 618839. https://doi.org/10.3389/fonc.2021.618839 .
doi: 10.3389/fonc.2021.618839
pubmed: 34055597
pmcid: 8160375
Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, et al. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aag0945 .
doi: 10.1126/scitranslmed.aag0945
pubmed: 29540614
pmcid: 5936748
Saha T, Dash C, Jayabalan R, Khiste S, Kulkarni A, Kurmi K, et al. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat Nanotechnol. 2022;17(1):98–106. https://doi.org/10.1038/s41565-021-01000-4 .
doi: 10.1038/s41565-021-01000-4
pubmed: 34795441
Chamoto K, Chowdhury PS, Kumar A, Sonomura K, Matsuda F, Fagarasan S, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA. 2017;114(5):E761–70. https://doi.org/10.1073/pnas.1620433114 .
doi: 10.1073/pnas.1620433114
pubmed: 28096382
pmcid: 5293087
Hatae R, Chamoto K, Kim YH, Sonomura K, Taneishi K, Kawaguchi S, et al. Combination of host immune metabolic biomarkers for the PD-1 blockade cancer immunotherapy. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.133501 .
doi: 10.1172/jci.insight.133501
pubmed: 31855576
pmcid: 7098729
van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36(1):68–78. https://doi.org/10.1016/j.immuni.2011.12.007 .
doi: 10.1016/j.immuni.2011.12.007
pubmed: 22206904
Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38(2):225–36. https://doi.org/10.1016/j.immuni.2012.10.020 .
doi: 10.1016/j.immuni.2012.10.020
pubmed: 23415911
pmcid: 3582741
Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, Rittenhouse NL, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol. 2021;22(2):205–15. https://doi.org/10.1038/s41590-020-00834-9 .
doi: 10.1038/s41590-020-00834-9
pubmed: 33398183
pmcid: 7971090
Baixauli F, Acin-Perez R, Villarroya-Beltri C, Mazzeo C, Nunez-Andrade N, Gabande-Rodriguez E, et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 2015;22(3):485–98. https://doi.org/10.1016/j.cmet.2015.07.020 .
doi: 10.1016/j.cmet.2015.07.020
pubmed: 26299452
pmcid: 5026297
Ron-Harel N, Santos D, Ghergurovich JM, Sage PT, Reddy A, Lovitch SB, et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 2016;24(1):104–17. https://doi.org/10.1016/j.cmet.2016.06.007 .
doi: 10.1016/j.cmet.2016.06.007
pubmed: 27411012
pmcid: 5330619
Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166(1):63–76. https://doi.org/10.1016/j.cell.2016.05.035 .
doi: 10.1016/j.cell.2016.05.035
pubmed: 27293185
pmcid: 4974356
Tanaka Y. Cancer immunotherapy harnessing gammadelta T cells and programmed death-1. Immunol Rev. 2020;298(1):237–53. https://doi.org/10.1111/imr.12917 .
doi: 10.1111/imr.12917
pubmed: 32888218
Lopes N, McIntyre C, Martin S, Raverdeau M, Sumaria N, Kohlgruber AC, et al. Distinct metabolic programs established in the thymus control effector functions of gammadelta T cell subsets in tumor microenvironments. Nat Immunol. 2021;22(2):179–92. https://doi.org/10.1038/s41590-020-00848-3 .
doi: 10.1038/s41590-020-00848-3
pubmed: 33462452
pmcid: 7610600
Yardeni T, Tanes CE, Bittinger K, Mattei LM, Schaefer PM, Singh LN, et al. Host mitochondria influence gut microbiome diversity: a role for ROS. Sci Signal. 2019. https://doi.org/10.1126/scisignal.aaw3159 .
doi: 10.1126/scisignal.aaw3159
pubmed: 31266851