MERRIN: MEtabolic regulation rule INference from time series data.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
16 09 2022
Historique:
entrez: 20 9 2022
pubmed: 21 9 2022
medline: 23 9 2022
Statut: ppublish

Résumé

Many techniques have been developed to infer Boolean regulations from a prior knowledge network (PKN) and experimental data. Existing methods are able to reverse-engineer Boolean regulations for transcriptional and signaling networks, but they fail to infer regulations that control metabolic networks. We present a novel approach to infer Boolean rules for metabolic regulation from time-series data and a PKN. Our method is based on a combination of answer set programming and linear programming. By solving both combinatorial and linear arithmetic constraints, we generate candidate Boolean regulations that can reproduce the given data when coupled to the metabolic network. We evaluate our approach on a core regulated metabolic network and show how the quality of the predictions depends on the available kinetic, fluxomics or transcriptomics time-series data. Software available at https://github.com/bioasp/merrin. Supplementary data are available at https://doi.org/10.5281/zenodo.6670164.

Identifiants

pubmed: 36124795
pii: 6702002
doi: 10.1093/bioinformatics/btac479
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

ii127-ii133

Subventions

Organisme : French Agence Nationale pour la Recherche
ID : ECCB2022
Organisme : French Laboratory of Excellence
ID : ANR-10-LABX-41

Informations de copyright

© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Auteurs

Kerian Thuillier (K)

INRIA, CNRS, IRISA, University of Rennes, Rennes F-35000, France.

Caroline Baroukh (C)

LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan F-31326, France.

Alexander Bockmayr (A)

Institute of Mathematics, Freie Universität Berlin, Berlin D-14195, Germany.

Ludovic Cottret (L)

LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan F-31326, France.

Loïc Paulevé (L)

Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France.

Anne Siegel (A)

INRIA, CNRS, IRISA, University of Rennes, Rennes F-35000, France.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Classifications MeSH