Epigenomic profiling of glucocorticoid responses identifies cis-regulatory disruptions impacting steroid resistance in childhood acute lymphoblastic leukemia.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
10 2022
Historique:
received: 02 05 2022
accepted: 11 08 2022
revised: 10 08 2022
pubmed: 27 8 2022
medline: 4 10 2022
entrez: 26 8 2022
Statut: ppublish

Résumé

Glucocorticoids (GCs) are a mainstay of contemporary, multidrug chemotherapy in the treatment of childhood acute lymphoblastic leukemia (ALL), and resistance to GCs remains a major clinical concern. Resistance to GCs is predictive of ALL relapse and poor clinical outcome, and therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes implicated in GC resistance, there remains an insufficient understanding of the impact of cis-regulatory disruptions in resistance. To address this, we mapped the gene regulatory response to GCs in two ALL cell lines using functional genomics and high-throughput reporter assays and identified thousands of GC-responsive changes to chromatin state, including the formation of over 250 GC-responsive super-enhancers and a depletion of AP-1 bound cis-regulatory elements implicated in cell proliferation and anti-apoptotic processes. By integrating our GC response maps with genetic and epigenetic datasets in primary ALL cells from patients, we further uncovered cis-regulatory disruptions at GC-responsive genes that impact GC resistance in childhood ALL. Overall, these data indicate that GCs initiate pervasive effects on the leukemia epigenome, and that alterations to the GC gene regulatory network contribute to GC resistance.

Identifiants

pubmed: 36028659
doi: 10.1038/s41375-022-01685-z
pii: 10.1038/s41375-022-01685-z
pmc: PMC9522591
mid: NIHMS1833642
doi:

Substances chimiques

Chromatin 0
Glucocorticoids 0
Receptors, Glucocorticoid 0
Steroids 0
Transcription Factor AP-1 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2374-2383

Subventions

Organisme : NCI NIH HHS
ID : R01 CA234490
Pays : United States
Organisme : NIGMS NIH HHS
ID : P50 GM115279
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA021765
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Moriyama T, Relling MV, Yang JJ. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood. 2015;125:3988–95.
pubmed: 25999454 pmcid: 4481591 doi: 10.1182/blood-2014-12-580001
Cooper SL, Brown PA. Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am. 2015;62:61–73.
pubmed: 25435112 doi: 10.1016/j.pcl.2014.09.006
Tasian SK, Loh ML, Hunger SP. Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer. 2015;121:3577–90.
pubmed: 26194091 doi: 10.1002/cncr.29573
Den Boer ML, Harms DO, Pieters R, Kazemier KM, Gobel U, Korholz D, et al. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol. 2003;21:3262–8.
doi: 10.1200/JCO.2003.11.031
Kaspers GJ, Veerman AJ, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER, et al. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood. 1997;90:2723–9.
pubmed: 9326239 doi: 10.1182/blood.V90.7.2723
Pieters R, Huismans DR, Loonen AH, Hahlen K, van der Does-van den Berg A, van Wering ER, et al. Relation of cellular drug resistance to long-term clinical outcome in childhood acute lymphoblastic leukaemia. Lancet. 1991;338:399–403.
pubmed: 1678081 doi: 10.1016/0140-6736(91)91029-T
Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood. 1999;94:1209–17.
pubmed: 10438708 doi: 10.1182/blood.V94.4.1209
Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.
pubmed: 26465987 doi: 10.1056/NEJMra1400972
Pui CH. Genomic and pharmacogenetic studies of childhood acute lymphoblastic leukemia. Front Med. 2015;9:1–9.
pubmed: 25511622 doi: 10.1007/s11684-015-0381-3
Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004;351:533–42.
pubmed: 15295046 doi: 10.1056/NEJMoa033513
Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–17.
pubmed: 23639321 doi: 10.1016/S1470-2045(12)70580-6
Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol. 2017;18:159–74.
pubmed: 28053348 pmcid: 6257982 doi: 10.1038/nrm.2016.152
Inaba H, Pui CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010;11:1096–106.
pubmed: 20947430 pmcid: 3309707 doi: 10.1016/S1470-2045(10)70114-5
Buentke E, Nordstrom A, Lin H, Bjorklund AC, Laane E, Harada M, et al. Glucocorticoid-induced cell death is mediated through reduced glucose metabolism in lymphoid leukemia cells. Blood Cancer J. 2011;1:e31.
pubmed: 22829187 pmcid: 3255251 doi: 10.1038/bcj.2011.27
Dyczynski M, Vesterlund M, Bjorklund AC, Zachariadis V, Janssen J, Gallart-Ayala H, et al. Metabolic reprogramming of acute lymphoblastic leukemia cells in response to glucocorticoid treatment. Cell Death Dis. 2018;9:846.
pubmed: 30154400 pmcid: 6113325 doi: 10.1038/s41419-018-0625-7
Kruth KA, Fang M, Shelton DN, Abu-Halawa O, Mahling R, Yang H, et al. Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia. Blood. 2017;129:3000–8.
pubmed: 28424165 pmcid: 5454339 doi: 10.1182/blood-2017-02-766204
Paugh SW, Bonten EJ, Savic D, Ramsey LB, Thierfelder WE, Gurung P, et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet. 2015;47:607–14.
pubmed: 25938942 pmcid: 4449308 doi: 10.1038/ng.3283
Autry RJ, Paugh SW, Carter R, Shi L, Liu J, Ferguson DC, et al. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nat Cancer. 2020;1:329–44.
pubmed: 32885175 pmcid: 7467080 doi: 10.1038/s43018-020-0037-3
Poulard C, Kim HN, Fang M, Kruth K, Gagnieux C, Gerke DS, et al. Relapse-associated AURKB blunts the glucocorticoid sensitivity of B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2019;116:3052–61.
pubmed: 30733284 pmcid: 6386662 doi: 10.1073/pnas.1816254116
Wandler AM, Huang BJ, Craig JW, Hayes K, Yan H, Meyer LK, et al. Loss of glucocorticoid receptor expression mediates in vivo dexamethasone resistance in T-cell acute lymphoblastic leukemia. Leukemia. 2020;34:2025–37.
pubmed: 32066867 pmcid: 7440098 doi: 10.1038/s41375-020-0748-6
van Galen JC, Kuiper RP, van Emst L, Levers M, Tijchon E, Scheijen B, et al. BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia. Blood. 2010;115:4810–9.
pubmed: 20354172 doi: 10.1182/blood-2009-05-223081
Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471:235–9.
pubmed: 21390130 pmcid: 3076610 doi: 10.1038/nature09727
Jones CL, Bhatla T, Blum R, Wang J, Paugh SW, Wen X, et al. Loss of TBL1XR1 disrupts glucocorticoid receptor recruitment to chromatin and results in glucocorticoid resistance in a B-lymphoblastic leukemia model. J Biol Chem. 2014;289:20502–15.
pubmed: 24895125 pmcid: 4110265 doi: 10.1074/jbc.M114.569889
Pottier N, Yang W, Assem M, Panetta JC, Pei D, Paugh SW, et al. The SWI/SNF chromatin-remodeling complex and glucocorticoid resistance in acute lymphoblastic leukemia. J Natl Cancer Inst. 2008;100:1792–803.
pubmed: 19066270 pmcid: 2639326 doi: 10.1093/jnci/djn416
Jing D, Huang Y, Liu X, Sia KCS, Zhang JC, Tai X, et al. Lymphocyte-specific chromatin accessibility pre-determines glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Cell. 2018;34:906–21.e8.
pubmed: 30537513 doi: 10.1016/j.ccell.2018.11.002
Diedrich JD, Dong Q, Ferguson DC, Bergeron BP, Autry RJ, Qian M, et al. Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia identifies subtype-specific chromatin landscapes and gene regulatory networks. Leukemia. 2021;35:3078–91.
Jeha S, Pei D, Choi J, Cheng C, Sandlund JT, Coustan-Smith E, et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude total therapy study 16. J Clin Oncol. 2019;37:3377–91.
pubmed: 31657981 pmcid: 7351342 doi: 10.1200/JCO.19.01692
Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 2016;48:1193–203.
pubmed: 27526324 pmcid: 5042844 doi: 10.1038/ng.3646
Savic D, Ramaker RC, Roberts BS, Dean EC, Burwell TC, Meadows SK, et al. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med. 2016;8:74.
pubmed: 27401066 pmcid: 4940857 doi: 10.1186/s13073-016-0328-6
Ramaker RC, Savic D, Hardigan AA, Newberry K, Cooper GM, Myers RM, et al. A genome-wide interactome of DNA-associated proteins in the human liver. Genome Res. 2017;27:1950–60.
pubmed: 29021291 pmcid: 5668951 doi: 10.1101/gr.222083.117
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554.
pubmed: 25476604 pmcid: 4290824 doi: 10.1186/s13059-014-0554-4
Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet. 2014;15:272–86.
pubmed: 24614317 doi: 10.1038/nrg3682
Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA. 2010;107:21931–6.
pubmed: 21106759 pmcid: 3003124 doi: 10.1073/pnas.1016071107
Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459:108–12.
pubmed: 19295514 pmcid: 2910248 doi: 10.1038/nature07829
McDowell IC, Barrera A, D’Ippolito AM, Vockley CM, Hong LK, Leichter SM, et al. Glucocorticoid receptor recruits to enhancers and drives activation by motif-directed binding. Genome Res. 2018;28:1272–84.
pubmed: 30097539 pmcid: 6120625 doi: 10.1101/gr.233346.117
Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P, et al. Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol Cell. 2013;52:25–36.
pubmed: 24076218 doi: 10.1016/j.molcel.2013.08.037
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.
pubmed: 23582322 pmcid: 3653129 doi: 10.1016/j.cell.2013.03.035
Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34.
pubmed: 23582323 pmcid: 3760967 doi: 10.1016/j.cell.2013.03.036
Schmidt S, Rainer J, Riml S, Ploner C, Jesacher S, Achmuller C, et al. Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood. 2006;107:2061–9.
pubmed: 16293608 doi: 10.1182/blood-2005-07-2853
Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods. 2016;13:919–22.
pubmed: 27643841 pmcid: 5501173 doi: 10.1038/nmeth.3999
Bentsen M, Goymann P, Schultheis H, Klee K, Petrova A, Wiegandt R, et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat Commun. 2020;11:4267.
pubmed: 32848148 pmcid: 7449963 doi: 10.1038/s41467-020-18035-1
Duren Z, Chen X, Jiang R, Wang Y, Wong WH. Modeling gene regulation from paired expression and chromatin accessibility data. Proc Natl Acad Sci USA. 2017;114:E4914–23.
pubmed: 28576882 pmcid: 5488952 doi: 10.1073/pnas.1704553114
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Wang X, He L, Goggin SM, Saadat A, Wang L, Sinnott-Armstrong N, et al. High-resolution genome-wide functional dissection of transcriptional regulatory regions and nucleotides in human. Nat Commun. 2018;9:5380.
pubmed: 30568279 pmcid: 6300699 doi: 10.1038/s41467-018-07746-1
Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 2013;339:1074–7.
pubmed: 23328393 doi: 10.1126/science.1232542
Bosanquet AG. Correlations between therapeutic response of leukaemias and in-vitro drug-sensitivity assay. Lancet. 1991;337:711–4.
pubmed: 1672185 doi: 10.1016/0140-6736(91)90287-Y
Hongo T, Yajima S, Sakurai M, Horikoshi Y, Hanada R. In vitro drug sensitivity testing can predict induction failure and early relapse of childhood acute lymphoblastic leukemia. Blood. 1997;89:2959–65.
pubmed: 9108416 doi: 10.1182/blood.V89.8.2959
Brassesco MS, Pezuk JA, Cortez MA, Bezerra Salomao K, Scrideli CA, Tone LG. TLE1 as an indicator of adverse prognosis in pediatric acute lymphoblastic leukemia. Leuk Res. 2018;74:42–6.
pubmed: 30286331 doi: 10.1016/j.leukres.2018.09.010
Chodaparambil JV, Pate KT, Hepler MR, Tsai BP, Muthurajan UM, Luger K, et al. Molecular functions of the TLE tetramerization domain in Wnt target gene repression. EMBO J. 2014;33:719–31.
pubmed: 24596249 pmcid: 4000089 doi: 10.1002/embj.201387188
Daniels DL, Weis WI. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005;12:364–71.
pubmed: 15768032 doi: 10.1038/nsmb912
Carleton JB, Berrett KC, Gertz J. Multiplex enhancer interference reveals collaborative control of gene regulation by estrogen receptor alpha-bound enhancers. Cell Syst. 2017;5:333–44.e5.
pubmed: 28964699 pmcid: 5679353 doi: 10.1016/j.cels.2017.08.011
Karvonen H, Perttila R, Niininen W, Hautanen V, Barker H, Murumagi A, et al. Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting. Oncogene. 2019;38:3288–300.
pubmed: 30631148 doi: 10.1038/s41388-018-0670-9
Bicocca VT, Chang BH, Masouleh BK, Muschen M, Loriaux MM, Druker BJ, et al. Crosstalk between ROR1 and the Pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell. 2012;22:656–67.
pubmed: 23153538 pmcid: 3500515 doi: 10.1016/j.ccr.2012.08.027

Auteurs

Brennan P Bergeron (BP)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Jonathan D Diedrich (JD)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Yang Zhang (Y)

Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Kelly R Barnett (KR)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Qian Dong (Q)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Daniel C Ferguson (DC)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Robert J Autry (RJ)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.

Wenjian Yang (W)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Baranda S Hansen (BS)

Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA.

Colton Smith (C)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Kristine R Crews (KR)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Yiping Fan (Y)

Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Ching-Hon Pui (CH)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Shondra M Pruett-Miller (SM)

Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA.

Mary V Relling (MV)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Jun J Yang (JJ)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.

Chunliang Li (C)

Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

William E Evans (WE)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.

Daniel Savic (D)

Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA. daniel.savic@stjude.org.
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. daniel.savic@stjude.org.
Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. daniel.savic@stjude.org.
Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA. daniel.savic@stjude.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH