SMAD4 and TGFβ are architects of inverse genetic programs during fate determination of antiviral CTLs.

CD8 T cell differentiation CD8 T cells CD8 memory SMAD4 TGFβ cytotoxic T lymphocyte immunology inflammation influenza a virus listeria monocytogenes mouse respiratory virus

Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
09 08 2022
Historique:
received: 17 12 2021
accepted: 05 08 2022
pubmed: 10 8 2022
medline: 27 8 2022
entrez: 9 8 2022
Statut: epublish

Résumé

Transforming growth factor β (TGFβ) is an important differentiation factor for cytotoxic T lymphocytes (CTLs) and alters the expression levels of several of homing receptors during infection. SMAD4 is part of the canonical signaling network used by members of the transforming growth factor family. For this study, genetically modified mice were used to determine how SMAD4 and TGFβ receptor II (TGFβRII) participate in transcriptional programming of pathogen-specific CTLs. We show that these molecules are essential components of opposing signaling mechanisms, and cooperatively regulate a collection of genes that determine whether specialized populations of pathogen-specific CTLs circulate around the body, or settle in peripheral tissues. TGFβ uses a canonical SMAD-dependent signaling pathway to downregulate Eomesodermin (EOMES), KLRG1, and CD62L, while CD103 is induced. Conversely, in vivo and in vitro data show that EOMES, KLRG1, CX

Identifiants

pubmed: 35942952
doi: 10.7554/eLife.76457
pii: 76457
pmc: PMC9402230
doi:
pii:

Substances chimiques

Smad4 Protein 0
Smad4 protein, mouse 0
Transforming Growth Factor beta 0
Receptor, Transforming Growth Factor-beta Type II EC 2.7.11.30
Tgfbr2 protein, mouse EC 2.7.11.30

Banques de données

GEO
['GSE151637', 'GSE39152', 'GSE107281', 'GSE70813', 'GSE125471', 'GSE135533']

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NCI NIH HHS
ID : P30 CA014195
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI123864
Pays : United States

Informations de copyright

© 2022, Chandiran et al.

Déclaration de conflit d'intérêts

KC, JS, YH, EJ, ZU, JL, BM, SK, LC No competing interests declared

Références

Cell. 2002 Nov 1;111(3):357-67
pubmed: 12419246
Genes Dev. 2005 Dec 1;19(23):2783-810
pubmed: 16322555
Immunity. 2013 Oct 17;39(4):687-96
pubmed: 24076049
Eur J Immunol. 2015 Aug;45(8):2212-7
pubmed: 26014037
Immunity. 2007 Aug;27(2):281-95
pubmed: 17723218
Oncogene. 2003 Mar 6;22(9):1317-23
pubmed: 12618756
Immunol Rev. 2022 Jan;305(1):77-89
pubmed: 34923638
J Immunol. 1998 Dec 15;161(12):6638-47
pubmed: 9862692
J Immunol. 2003 Jun 15;170(12):5876-85
pubmed: 12794113
J Exp Med. 2006 Feb 20;203(2):289-95
pubmed: 16461340
Cell Death Dis. 2015 Nov 19;6:e1984
pubmed: 26583325
Mol Cell Biol. 2008 Dec;28(23):7001-11
pubmed: 18809571
J Immunol. 2010 Jul 15;185(2):842-55
pubmed: 20548029
Science. 2003 Nov 7;302(5647):1041-3
pubmed: 14605368
J Clin Invest. 2022 Apr 15;132(8):
pubmed: 35426367
Immunity. 2018 Apr 17;48(4):716-729.e8
pubmed: 29625895
Vaccine. 2009 Mar 26;27(15):2177-87
pubmed: 19201385
Cell. 1994 Jan 14;76(1):17-27
pubmed: 8287475
Mol Cell Biol. 2006 Jan;26(2):654-67
pubmed: 16382155
Sci Rep. 2020 Jun 3;10(1):9069
pubmed: 32494000
J Immunol. 2013 Sep 1;191(5):2299-307
pubmed: 23904158
Nat Immunol. 2011 Nov 06;12(12):1221-9
pubmed: 22057289
Nat Immunol. 2011 Nov 06;12(12):1230-7
pubmed: 22057288
Science. 2016 Apr 22;352(6284):459-63
pubmed: 27102484
Immunity. 2011 Apr 22;34(4):492-504
pubmed: 21497118
J Immunol. 2002 Jun 15;168(12):6173-80
pubmed: 12055230
EMBO J. 1999 Mar 1;18(5):1280-91
pubmed: 10064594
Sci Signal. 2019 Feb 26;12(570):
pubmed: 30808818
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25667-25678
pubmed: 32978300
Nat Immunol. 2005 Dec;6(12):1236-44
pubmed: 16273099
Nat Immunol. 2013 Dec;14(12):1285-93
pubmed: 24162775
J Exp Med. 2015 Nov 16;212(12):2041-56
pubmed: 26503446
Immunity. 2013 Aug 22;39(2):347-56
pubmed: 23932571
Nat Rev Mol Cell Biol. 2012 Oct;13(10):616-30
pubmed: 22992590
Science. 2019 Oct 11;366(6462):
pubmed: 31601741
Immunity. 2009 Jul 17;31(1):131-44
pubmed: 19604492
Immunol Rev. 2006 Jun;211:81-92
pubmed: 16824119
Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12442-7
pubmed: 10535941
Int Immunol. 2007 Apr;19(4):391-400
pubmed: 17307799
J Exp Med. 2018 Apr 2;215(4):1153-1168
pubmed: 29449309
J Exp Med. 2020 Oct 5;217(10):
pubmed: 32728699
Nat Immunol. 2003 Dec;4(12):1191-8
pubmed: 14625547
Sci Immunol. 2021 Aug 20;6(62):
pubmed: 34417257
J Virol. 1996 Dec;70(12):8624-9
pubmed: 8970987
J Immunol. 2011 Jan 15;186(2):775-83
pubmed: 21160050
Nat Immunol. 2016 Jun;17(6):704-11
pubmed: 27064374
Immunity. 2015 Dec 15;43(6):1101-11
pubmed: 26682984
J Immunol. 2020 Aug 15;205(4):1059-1069
pubmed: 32611727
Blood. 2011 Dec 1;118(23):6115-22
pubmed: 21937697
J Immunol. 2015 Mar 1;194(5):2407-14
pubmed: 25637015
Br J Dermatol. 2002 Dec;147(6):1118-26
pubmed: 12452860
J Exp Med. 2018 Mar 5;215(3):773-783
pubmed: 29440362
J Immunol. 2012 Oct 1;189(7):3462-71
pubmed: 22922816
Cell Rep. 2021 May 11;35(6):109120
pubmed: 33979613
PLoS One. 2019 Feb 11;14(2):e0210495
pubmed: 30742629
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Sci Adv. 2022 Jul 29;8(30):eabo4577
pubmed: 35895826
Eur J Immunol. 2008 Dec;38(12):3354-64
pubmed: 19009530
Blood. 2011 Oct 6;118(14):3890-900
pubmed: 21832277
Annu Rev Immunol. 2013;31:137-61
pubmed: 23215646
Nature. 2017 Dec 14;552(7684):253-257
pubmed: 29211713
PLoS One. 2012;7(7):e40865
pubmed: 22815848
Front Immunol. 2019 Jun 14;10:1370
pubmed: 31258537
Immunity. 2016 Dec 20;45(6):1270-1284
pubmed: 27939671
Eur J Immunol. 2009 Aug;39(8):2083-7
pubmed: 19637204
Immunity. 2014 Oct 16;41(4):633-45
pubmed: 25308332
Sci Rep. 2015 Jul 20;5:12264
pubmed: 26191658
J Immunol. 2011 Nov 15;187(10):4967-78
pubmed: 21987662
J Immunol. 2001 Mar 1;166(5):3402-9
pubmed: 11207297
J Leukoc Biol. 2000 Jun;67(6):825-33
pubmed: 10857855
J Immunol. 2006 Sep 1;177(5):2917-25
pubmed: 16920927
Mol Cell Biol. 2000 Jun;20(11):4106-14
pubmed: 10805752
Cell Mol Immunol. 2021 Oct;18(10):2410-2421
pubmed: 32612153
Immunity. 2007 Dec;27(6):985-97
pubmed: 18082432

Auteurs

Karthik Chandiran (K)

Department of Immunology, University of Connecticut Health Center, Farmington, United States.

Jenny E Suarez-Ramirez (JE)

Department of Immunology, University of Connecticut Health Center, Farmington, United States.

Yinghong Hu (Y)

Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, United States.

Evan R Jellison (ER)

Department of Immunology, University of Connecticut Health Center, Farmington, United States.

Zeynep Ugur (Z)

Department of Immunology, University of Connecticut Health Center, Farmington, United States.

Jun Siong Low (JS)

Department of Immunobiology, Yale University School of Medicine, New Haven, United States.

Bryan McDonald (B)

NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, United States.

Susan M Kaech (SM)

NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, United States.

Linda S Cauley (LS)

Department of Immunology, University of Connecticut Health Center, Farmington, United States.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH