Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders.
DNA methylation
clinical diagnostics
episignatures
neurodevelopmental syndromes
Journal
Human mutation
ISSN: 1098-1004
Titre abrégé: Hum Mutat
Pays: United States
ID NLM: 9215429
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
revised:
30
06
2022
received:
06
12
2021
accepted:
27
07
2022
pubmed:
30
7
2022
medline:
14
10
2022
entrez:
29
7
2022
Statut:
ppublish
Résumé
An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders.
Substances chimiques
DNA, Intergenic
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1609-1628Subventions
Organisme : NICHD NIH HHS
ID : K08 HD086250
Pays : United States
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Aref-Eshghi, E., Bend, E. G., Hood, R. L., Schenkel, L. C., Carere, D. A., Chakrabarti, R., Nagamani, S., Cheung, S. W., Campeau, P. M., Prasad, C., Siu, V. M., Brady, L., Tarnopolsky, M. A., Callen, D. J., Innes, A. M., White, S. M., Meschino, W. S., Shuen, A. Y., Paré, G., … Sadikovic, B. (2018). BAFopathies' DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin-Siris and Nicolaides-Baraitser syndromes. Nature Communications, 9(1), 4885. https://doi.org/10.1038/s41467-018-07193-y
Aref-Eshghi, E., Kerkhof, J., Pedro, V. P., Barat-Houari, M., Ruiz-Pallares, N., Andrau, J. C., Lacombe, D., Van-Gils, J., Fergelot, P., Dubourg, C., Cormier-Daire, V., Rondeau, S., Lecoquierre, F., Saugier-Veber, P., Nicolas, G., Lesca, G., Chatron, N., Sanlaville, D., Vitobello, A., … Sadikovic, B. (2020). Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. American Journal of Human Genetics, 106(3), 356-370. https://doi.org/10.1016/j.ajhg.2020.01.019
Aref-Eshghi, E., Rodenhiser, D. I., Schenkel, L. C., Lin, H., Skinner, C., Ainsworth, P., Paré, G., Hood, R. L., Bulman, D. E., Kernohan, K. D., Boycott, K. M., Campeau, P. M., Schwartz, C., & Sadikovic, B. (2018). Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. American Journal of Human Genetics, 102(1), 156-174. https://doi.org/10.1016/j.ajhg.2017.12.008
Aref-Eshghi, E., Schenkel, L. C., Lin, H., Skinner, C., Ainsworth, P., Paré, G., Rodenhiser, D., Schwartz, C., & Sadikovic, B. (2017). The defining DNA methylation signature of Kabuki syndrome enables functional assessment of genetic variants of unknown clinical significance. Epigenetics, 12(11), 923-933. https://doi.org/10.1080/15592294.2017.1381807
Bedford, D. C., Kasper, L. H., Fukuyama, T., & Brindle, P. K. (2010). Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics, 5(1), 9-15. https://doi.org/10.4161/epi.5.1.10449
Bend, E. G., Aref-Eshghi, E., Everman, D. B., Rogers, R. C., Cathey, S. S., Prijoles, E. J., Lyons, M. J., Davis, H., Clarkson, K., Gripp, K. W., Li, D., Bhoj, E., Zackai, E., Mark, P., Hakonarson, H., Demmer, L. A., Levy, M. A., Kerkhof, J., Stuart, A., … Sadikovic, B. (2019). Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome. Clinical Epigenetics, 11(1), 64. https://doi.org/10.1186/s13148-019-0658-5
Campeau, P. M., Lu, J. T., Dawson, B. C., Fokkema, I. F., Robertson, S. P., Gibbs, R. A., & Lee, B. H. (2012). The KAT6B-related disorders genitopatellar syndrome and Ohdo/SBBYS syndrome have distinct clinical features reflecting distinct molecular mechanisms. Human Mutation, 33(11), 1520-1525. https://doi.org/10.1002/humu.22141
Cavalcante, R. G., & Sartor, M. A. (2017). annotatr: Genomic regions in context. Bioinformatics, 33(15), 2381-2383. https://doi.org/10.1093/bioinformatics/btx183
Chen, Y. A., Lemire, M., Choufani, S., Butcher, D. T., Grafodatskaya, D., Zanke, B. W., Gallinger, S., Hudson, T. J., & Weksberg, R. (2013). Discovery of cross-reactive probes and polymorphic CpGs in the illumina infinium HumanMethylation450 microarray. Epigenetics, 8(2), 203-209. https://doi.org/10.4161/epi.23470
Ciolfi, A., Aref-Eshghi, E., Pizzi, S., Pedace, L., Miele, E., Kerkhof, J., Flex, E., Martinelli, S., Radio, F. C., Ruivenkamp, C., Santen, G., Bijlsma, E., Barge-Schaapveld, D., Ounap, K., Siu, V. M., Kooy, R. F., Dallapiccola, B., Sadikovic, B., & Tartaglia, M. (2020). Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature. Clinical Epigenetics, 12(1), 7. https://doi.org/10.1186/s13148-019-0804-0
Ciolfi, A., Foroutan, A., Capuano, A., Pedace, L., Travaglini, L., Pizzi, S., Andreani, M., Miele, E., Invernizzi, F., Reale, C., Panteghini, C., Iascone, M., Niceta, M., Gavrilova, R. H., Schultz-Rogers, L., Agolini, E., Bedeschi, M. F., Prontera, P., Garibaldi, M., … Sadikovic, B. (2021). Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile. Clinical Epigenetics, 13(1), 157. https://doi.org/10.1186/s13148-021-01145-y
Ciptasari, U., & van Bokhoven, H. (2020). The phenomenal epigenome in neurodevelopmental disorders. Human Molecular Genetics, 29(R1), R42-R50. https://doi.org/10.1093/hmg/ddaa175
Flex, E., Martinelli, S., Van Dijck, A., Ciolfi, A., Cecchetti, S., Coluzzi, E., Pannone, L., Andreoli, C., Radio, F. C., Pizzi, S., Carpentieri, G., Bruselles, A., Catanzaro, G., Pedace, L., Miele, E., Carcarino, E., Ge, X., Chijiwa, C., Lewis, M., … Tartaglia, M. (2019). Aberrant function of the C-terminal tail of HIST1H1E accelerates cellular senescence and causes premature aging. American Journal of Human Genetics, 105(3), 493-508. https://doi.org/10.1016/j.ajhg.2019.07.007
Greenberg, M. V. C., & Bourc'his, D. (2019). The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews Molecular Cell Biology, 20(10), 590-607. https://doi.org/10.1038/s41580-019-0159-6
Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). circlize implements and enhances circular visualization in R. Bioinformatics, 30(19), 2811-2812. https://doi.org/10.1093/bioinformatics/btu393
Haghshenas, S., Levy, M. A., Kerkhof, J., Aref-Eshghi, E., McConkey, H., Balci, T., Siu, V. M., Skinner, C. D., Stevenson, R. E., Sadikovic, B., & Schwartz, C. (2021). Detection of a DNA methylation signature for the intellectual developmental disorder, X-linked, syndromic, armfield type. International Journal of Molecular Sciences, 22(3), 1111. https://doi.org/10.3390/ijms22031111
Hood, R. L., Schenkel, L. C., Nikkel, S. M., Ainsworth, P. J., Pare, G., Boycott, K. M., Bulman, D. E., & Sadikovic, B. (2016). The defining DNA methylation signature of Floating-Harbor syndrome. Scientific Reports, 6, 38803. https://doi.org/10.1038/srep38803
Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., Wiencke, J. K., & Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86. https://doi.org/10.1186/1471-2105-13-86
Janssen, S. M., & Lorincz, M. C. (2021). Interplay between chromatin marks in development and disease. Nature Reviews Genetics, 23, 137-153. https://doi.org/10.1038/s41576-021-00416-x
Kennedy, J., Goudie, D., Blair, E., Chandler, K., Joss, S., McKay, V., Green, A., Armstrong, R., Lees, M., Kamien, B., Hopper, B., Tan, T. Y., Yap, P., Stark, Z., Okamoto, N., Miyake, N., Matsumoto, N., Macnamara, E., Murphy, J. L., … Newbury-Ecob, R. (2019). KAT6A syndrome: Genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants. Genetics in Medicine, 21(4), 850-860. https://doi.org/10.1038/s41436-018-0259-2
Kerkhof, J., Squeo, G. M., McConkey, H., Levy, M. A., Piemontese, M. R., Castori, M., Accadia, M., Biamino, E., Della Monica, M., Di Giacomo, M. C., Gervasini, C., Maitz, S., Melis, D., Milani, D., Piccione, M., Prontera, P., Selicorni, A., Sadikovic, B., & Merla, G. (2021). DNA methylation episignature testing improves molecular diagnosis of Mendelian chromatinopathies. Genetics in Medicine, 24, 51-60. https://doi.org/10.1016/j.gim.2021.08.007
Krzyzewska, I. M., Maas, S. M., Henneman, P., Lip, K., Venema, A., Baranano, K., Chassevent, A., Aref-Eshghi, E., van Essen, A. J., Fukuda, T., Ikeda, H., Jacquemont, M., Kim, H. G., Labalme, A., Lewis, S., Lesca, G., Madrigal, I., Mahida, S., Matsumoto, N., … Mannens, M. (2019). A genome-wide DNA methylation signature for SETD1B-related syndrome. Clinical Epigenetics, 11(1), 156. https://doi.org/10.1186/s13148-019-0749-3
Kvarnung, M., & Nordgren, A. (2017). Intellectual disability & rare disorders: A diagnostic challenge. Advances in Experimental Medicine and Biology, 1031, 39-54. https://doi.org/10.1007/978-3-319-67144-4_3
Levy, M. A., Beck, D. B., Metcalfe, K., Douzgou, S., Sithambaram, S., Cottrell, T., Ansar, M., Kerkhof, J., Mignot, C., Nougues, M. C., Keren, B., Moore, H. W., Oegema, R., Giltay, J. C., Simon, M., van Jaarsveld, R. H., Bos, J., van Haelst, M., Motazacker, M. M., … Fahrner, J. A. (2021). Deficiency of TET3 leads to a genome-wide DNA hypermethylation episignature in human whole blood. NPJ Genomic Medicine, 6(1), 92. https://doi.org/10.1038/s41525-021-00256-y
Levy, M. A., McConkey, H., Kerkhof, J., Barat-Houari, M., Bargiacchi, S., Biamino, E., Bralo, M. P., Cappuccio, G., Ciolfi, A., Clarke, A., DuPont, B. R., Elting, M. W., Faivre, L., Fee, T., Fletcher, R. S., Cherik, F., Foroutan, A., Friez, M. J., Gervasini, C., … Sadikovic, B. (2022). Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Advances, 3(1), 100075. https://doi.org/10.1016/j.xhgg.2021.100075
Lonardo, F., Lonardo, M. S., Acquaviva, F., Della Monica, M., Scarano, F., & Scarano, G. (2019). Say-Barber-Biesecker-Young-Simpson syndrome and genitopatellar syndrome: Lumping or splitting? Clinical Genetics, 95(2), 253-261. https://doi.org/10.1111/cge.13127.
Menke, L. A., Ddd, s, Gardeitchik, T., Hammond, P., Heimdal, K. R., Houge, G., Hufnagel, S. B., Ji, J., Johansson, S., Kant, S. G., Kinning, E., Leon, E. L., Newbury-Ecob, R., Paolacci, S., Pfundt, R., Ragge, N. K., Rinne, T., Ruivenkamp, C., Saitta, S. C., … Hennekam, R. C. (2018). Further delineation of an entity caused by CREBBP and EP300 mutations but not resembling Rubinstein-Taybi syndrome. American journal of medical genetics. Part A, 176(4), 862-876. https://doi.org/10.1002/ajmg.a.38626
Online Mendelian Inheritance in Man, OMIM®. (2022). McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). www.omim.org
Peters, T. J., Buckley, M. J., Statham, A. L., Pidsley, R., Samaras, K., V Lord, R., Clark, S. J., & Molloy, P. L. (2015). De novo identification of differentially methylated regions in the human genome. Epigenetics & Chromatin, 8, 6. https://doi.org/10.1186/1756-8935-8-6
Phipson, B., Maksimovic, J., & Oshlack, A. (2016). missMethyl: An R package for analyzing data from illumina's HumanMethylation450 platform. Bioinformatics, 32(2), 286-288. https://doi.org/10.1093/bioinformatics/btv560
Pidsley, R., Zotenko, E., Peters, T. J., Lawrence, M. G., Risbridger, G. P., Molloy, P., Van Djik, S., Muhlhausler, B., Stirzaker, C., & Clark, S. J. (2016). Critical evaluation of the illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biology, 17(1), 208. https://doi.org/10.1186/s13059-016-1066-1
Radio, F. C., Pang, K., Ciolfi, A., Levy, M. A., Hernández-García, A., Pedace, L., Pantaleoni, F., Liu, Z., de Boer, E., Jackson, A., Bruselles, A., McConkey, H., Stellacci, E., Lo Cicero, S., Motta, M., Carrozzo, R., Dentici, M. L., McWalter, K., Desai, M., … Tartaglia, M. (2021). SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females. American Journal of Human Genetics, 108(3), 502-516. https://doi.org/10.1016/j.ajhg.2021.01.015
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007
Rooney, K., Levy, M. A., Haghshenas, S., Kerkhof, J., Rogaia, D., Tedesco, M. G., Imperatore, V., Mencarelli, A., Squeo, G. M., Di Venere, E., Di Cara, G., Verrotti, A., Merla, G., Tedder, M. L., DuPont, B. R., Sadikovic, B., & Prontera, P. (2021). Identification of a DNA methylation episignature in the 22q11.2 deletion syndrome. International Journal of Molecular Sciences, 22(16), 8611. https://doi.org/10.3390/ijms22168611
Sadikovic, B., Aref-Eshghi, E., Levy, M. A., & Rodenhiser, D. (2019). DNA methylation signatures in Mendelian developmental disorders as a diagnostic bridge between genotype and phenotype. Epigenomics, 11(5), 563-575. https://doi.org/10.2217/epi-2018-0192
Sadikovic, B., Levy, M. A., Kerkhof, J., Aref-Eshghi, E., Schenkel, L., Stuart, A., McConkey, H., Henneman, P., Venema, A., Schwartz, C. E., Stevenson, R. E., Skinner, S. A., DuPont, B. R., Fletcher, R. S., Balci, T. B., Siu, V. M., Granadillo, J. L., Masters, J., Kadour, M., … Alders, M. (2021). Clinical epigenomics: Genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders. Genetics in Medicine, 23(6), 1065-1074. https://doi.org/10.1038/s41436-020-01096-4
Schenkel, L. C., Aref-Eshghi, E., Rooney, K., Kerkhof, J., Levy, M. A., McConkey, H., Rogers, R. C., Phelan, K., Sarasua, S. M., Jain, L., Pauly, R., Boccuto, L., DuPont, B., Cappuccio, G., Brunetti-Pierri, N., Schwartz, C. E., & Sadikovic, B. (2021). DNA methylation epi-signature is associated with two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome. Clinical Epigenetics, 13(1), 2. https://doi.org/10.1186/s13148-020-00990-7
Schenkel, L. C., Aref-Eshghi, E., Skinner, C., Ainsworth, P., Lin, H., Paré, G., Rodenhiser, D. I., Schwartz, C., & Sadikovic, B. (2018). Peripheral blood epi-signature of Claes-Jensen syndrome enables sensitive and specific identification of patients and healthy carriers with pathogenic mutations in KDM5C. Clinical Epigenetics, 10, 21. https://doi.org/10.1186/s13148-018-0453-8
Schenkel, L. C., Kernohan, K. D., McBride, A., Reina, D., Hodge, A., Ainsworth, P. J., Rodenhiser, D. I., Pare, G., Bérubé, N. G., Skinner, C., Boycott, K. M., Schwartz, C., & Sadikovic, B. (2017). Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics & Chromatin, 10, 10. https://doi.org/10.1186/s13072-017-0118-4
Siu, M. T., Butcher, D. T., Turinsky, A. L., Cytrynbaum, C., Stavropoulos, D. J., Walker, S., Caluseriu, O., Carter, M., Lou, Y., Nicolson, R., Georgiades, S., Szatmari, P., Anagnostou, E., Scherer, S. W., Choufani, S., Brudno, M., & Weksberg, R. (2019). Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Clinical Epigenetics, 11(1), 103. https://doi.org/10.1186/s13148-019-0684-3
Su, G., Morris, J. H., Demchak, B., & Bader, G. D. (2014). Biological network exploration with Cytoscape 3. Current Protocols in Bioinformatics, 47(8. 13), 11-24. https://doi.org/10.1002/0471250953.bi0813s47
Tatton-Brown, K., Loveday, C., Yost, S., Clarke, M., Ramsay, E., Zachariou, A., Elliott, A., Wylie, H., Ardissone, A., Rittinger, O., Stewart, F., Temple, I. K., Cole, T., Childhood Overgrowth, C., Mahamdallie, S., Seal, S., Ruark, E., & Rahman, N. (2017). Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. American Journal of Human Genetics, 100(5), 725-736. https://doi.org/10.1016/j.ajhg.2017.03.010
Tham, E., Lindstrand, A., Santani, A., Malmgren, H., Nesbitt, A., Dubbs, H. A., Zackai, E. H., Parker, M. J., Millan, F., Rosenbaum, K., Wilson, G. N., & Nordgren, A. (2015). Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. American Journal of Human Genetics, 96(3), 507-513. https://doi.org/10.1016/j.ajhg.2015.01.016
Velasco, G., & Francastel, C. (2019). Genetics meets DNA methylation in rare diseases. Clinical Genetics, 95(2), 210-220. https://doi.org/10.1111/cge.13480
Villicana, S., & Bell, J. T. (2021). Genetic impacts on DNA methylation: Research findings and future perspectives. Genome Biology, 22(1), 127. https://doi.org/10.1186/s13059-021-02347-6
Weinberg, D. N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K. N., Horth, C., McGuire, J. T., Xu, X., Nikbakht, H., Lemiesz, A. E., Marchione, D. M., Marunde, M. R., Meiners, M. J., Cheek, M. A., Keogh, M. C., Bareke, E., Djedid, A., Harutyunyan, A. S., … Lu, C. (2019). The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature, 573(7773), 281-286. https://doi.org/10.1038/s41586-019-1534-3
Wiesel-Motiuk, N., & Assaraf, Y. G. (2020). The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resistance Updates, 53, 100729. https://doi.org/10.1016/j.drup.2020.100729