Classification of Three Volatiles Using a Single-Type eNose with Detailed Class-Map Visualization.

MOX gas sensors PCA and LDA analysis array of gas sensors eNose electronic nose

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
14 Jul 2022
Historique:
received: 15 06 2022
revised: 07 07 2022
accepted: 11 07 2022
entrez: 27 7 2022
pubmed: 28 7 2022
medline: 29 7 2022
Statut: epublish

Résumé

The use of electronic noses (eNoses) as analysis tools are growing in popularity; however, the lack of a comprehensive, visual representation of how the different classes are organized and distributed largely complicates the interpretation of the classification results, thus reducing their practicality. The new contributions of this paper are the assessment of the multivariate classification performance of a custom, low-cost eNose composed of 16 single-type (identical) MOX gas sensors for the classification of three volatiles, along with a proposal to improve the visual interpretation of the classification results by means of generating a detailed 2D class-map representation based on the inverse of the orthogonal linear transformation obtained from a PCA and LDA analysis. The results showed that this single-type eNose implementation was able to perform multivariate classification, while the class-map visualization summarized the learned features and how these features may affect the performance of the classification, simplifying the interpretation and understanding of the eNose results.

Identifiants

pubmed: 35890951
pii: s22145262
doi: 10.3390/s22145262
pmc: PMC9320711
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Sensors (Basel). 2018 Jan 25;18(2):
pubmed: 29370092
Sensors (Basel). 2022 Feb 01;22(3):
pubmed: 35161866
Sensors (Basel). 2017 Oct 28;17(11):
pubmed: 29143775
iScience. 2021 Nov 16;24(12):103371
pubmed: 34988386
Psychol Sci Public Interest. 2021 Dec;22(3):110-161
pubmed: 34907835
Sensors (Basel). 2020 Jun 23;20(12):
pubmed: 32585850
Sensors (Basel). 2019 Apr 26;19(9):
pubmed: 31027330
Sensors (Basel). 2019 Feb 07;19(3):
pubmed: 30736489
Sensors (Basel). 2022 Jun 04;22(11):
pubmed: 35684903
Sensors (Basel). 2013 Oct 22;13(10):14214-47
pubmed: 24152879
Sensors (Basel). 2022 Feb 15;22(4):
pubmed: 35214407
Sensors (Basel). 2022 Jan 22;22(3):
pubmed: 35161583
Anal Chim Acta. 2018 Jul 12;1013:13-25
pubmed: 29501088
Nature. 1982 Sep 23;299(5881):352-5
pubmed: 7110356
Environ Int. 2017 Feb;99:293-302
pubmed: 28038970
Phys Med Biol. 2021 Feb 02;66(4):04TR01
pubmed: 33227719
Science. 2017 May 12;356(6338):
pubmed: 28495701
Sensors (Basel). 2010;10(3):2088-106
pubmed: 22294916
Sensors (Basel). 2021 Oct 29;21(21):
pubmed: 34770522
Micromachines (Basel). 2018 Oct 29;9(11):
pubmed: 30715056
Biostatistics. 2007 Jan;8(1):86-100
pubmed: 16603682

Auteurs

Jordi Palacín (J)

Robotics Laboratory, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain.

Elena Rubies (E)

Robotics Laboratory, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain.

Eduard Clotet (E)

Robotics Laboratory, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain.

Articles similaires

Electronic Nose Animals Ostreidae Machine Learning Neural Networks, Computer
Electronic Nose Humans Kidney Diseases Ammonia Breath Tests
Humans Bronchopulmonary Dysplasia Pilot Projects Infant, Premature Infant, Newborn
Humans Volatile Organic Compounds Electronic Nose Breath Tests Hypoxia

Classifications MeSH