Sarcopenia and nervous system disorders.
Cognitive impairment
Depression
Ischemic stroke
Parkinson’s disease
Sarcopenia
Sleep disorders
Journal
Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
18
05
2022
accepted:
01
07
2022
revised:
29
06
2022
pubmed:
14
7
2022
medline:
14
10
2022
entrez:
13
7
2022
Statut:
ppublish
Résumé
Sarcopenia has an insidious start that can induce physical malfunction, raise the risk of falls, disability, and mortality in the old, severely impair the aged persons' quality of life and health. More and more studies have demonstrated that sarcopenia is linked to neurological diseases in recent years. This review examines the advancement of sarcopenia and neurological illnesses research.
Identifiants
pubmed: 35829759
doi: 10.1007/s00415-022-11268-8
pii: 10.1007/s00415-022-11268-8
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
5787-5797Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.
Références
Rosenberg I (1989) Epidemiologic and methodologic problems in determining nutritional status of older persons. Am J Clin Nutr 50(5):1121–1235
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–423. https://doi.org/10.1093/ageing/afq034
doi: 10.1093/ageing/afq034
pubmed: 20392703
pmcid: 2886201
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2 (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169
doi: 10.1093/ageing/afy169
pubmed: 30312372
Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O et al (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025
doi: 10.1016/j.jamda.2013.11.025
pubmed: 24461239
Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol 69(5):547–558. https://doi.org/10.1093/gerona/glu010
doi: 10.1093/gerona/glu010
Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, Celis-Morales C (2022) Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 13(1):86–99. https://doi.org/10.1002/jcsm.12783
doi: 10.1002/jcsm.12783
pubmed: 34816624
Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet (London, England) 393(10191):2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9
doi: 10.1016/S0140-6736(19)31138-9
Clark BC, Carson RG (2021) Sarcopenia and neuroscience: learning to communicate. J Gerontol 76(10):1882–1890. https://doi.org/10.1093/gerona/glab098
doi: 10.1093/gerona/glab098
Kara M, Özçakar L, Kaymak B, Ata AM, Frontera W (2020) A “Neuromuscular Look” to sarcopenia: Is it a movement disorder? J Rehabil Med 52(4):jrm00042. https://doi.org/10.2340/16501977-2672
doi: 10.2340/16501977-2672
pubmed: 32253444
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA (2022) A neuromuscular perspective of sarcopenia pathogenesis: deciphering the signaling pathways involved. GeroScience. https://doi.org/10.1007/s11357-021-00510-2
doi: 10.1007/s11357-021-00510-2
pubmed: 34981273
pmcid: 9213593
Mas MF, González J, Frontera WR (2020) Stroke and sarcopenia. Curr Phys Med Rehabil Rep 8(4):452–460. https://doi.org/10.1007/s40141-020-00284-2
doi: 10.1007/s40141-020-00284-2
pubmed: 33777503
pmcid: 7990034
He N, Zhang Y, Zhang L, Zhang S, Ye H (2021) Relationship between sarcopenia and cardiovascular diseases in the elderly: an overview. Front Cardiovasc Med 8:743710. https://doi.org/10.3389/fcvm.2021.743710
doi: 10.3389/fcvm.2021.743710
pubmed: 34957238
pmcid: 8695853
Sasaki KI, Fukumoto Y (2022) Sarcopenia as a comorbidity of cardiovascular disease. J Cardiol 79(5):596–604. https://doi.org/10.1016/j.jjcc.2021.10.013
doi: 10.1016/j.jjcc.2021.10.013
pubmed: 34906433
Gueugneau M, Coudy-Gandilhon C, Meunier B, Combaret L, Taillandier D, Polge C, Attaix D, Roche F, Féasson L, Barthélémy JC, Béchet D (2016) Lower skeletal muscle capillarization in hypertensive elderly men. Exp Gerontol 76:80–88. https://doi.org/10.1016/j.exger.2016.01.013
doi: 10.1016/j.exger.2016.01.013
pubmed: 26826452
Miloserdov MA, Maslova NN, Erohina AS, Evseev AV, Maslov NE (2022) Stroke risk stratification in elderly patients with comorbid sarcopenia and atherosclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 122(3. Vyp. 2):31–37. https://doi.org/10.1716/jnevro202212203231 (Russian)
doi: 10.1716/jnevro202212203231
pubmed: 35318840
Harris ML, Polkey MI, Bath PM, Moxham J (2001) Quadriceps muscle weakness following acute hemiplegic stroke. Clin Rehabil 15(3):274–281. https://doi.org/10.1191/026921501669958740
doi: 10.1191/026921501669958740
pubmed: 11386397
Scherbakov N, von Haehling S, Anker SD, Dirnagl U, Doehner W (2013) Stroke induced Sarcopenia: muscle wasting and disability after stroke. Int J Cardiol 170(2):89–94. https://doi.org/10.1016/j.ijcard.2013.10.031
doi: 10.1016/j.ijcard.2013.10.031
pubmed: 24231058
Ryan AS, Ivey FM, Serra MC, Hartstein J, Hafer-Macko CE (2017) Sarcopenia and physical function in middle-aged and older stroke survivors. Arch Phys Med Rehabil 98(3):495–499. https://doi.org/10.1016/j.apmr.2016.07.015
doi: 10.1016/j.apmr.2016.07.015
pubmed: 27530769
Lee H, Lee IH, Heo J, Baik M, Park H, Lee HS, Nam HS, Kim YD (2022) Impact of sarcopenia on functional outcomes among patients with mild acute ischemic stroke and transient ischemic attack: a retrospective study. Front Neurol 13:841945. https://doi.org/10.3389/fneur.2022.841945
doi: 10.3389/fneur.2022.841945
pubmed: 35370897
pmcid: 8964497
Nozoe M, Kanai M, Kubo H, Yamamoto M, Shimada S, Mase K (2019) Prestroke sarcopenia and stroke severity in elderly patients with acute stroke. J Stroke Cerebrovascular Dis 28(8):2228–2231. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.05.001
doi: 10.1016/j.jstrokecerebrovasdis.2019.05.001
Park JG, Lee KW, Kim SB, Lee JH, Kim YH (2019) Effect of decreased skeletal muscle index and hand grip strength on functional recovery in subacute ambulatory stroke patients. Ann Rehabil Med 43(5):535–543. https://doi.org/10.5535/arm.2019.43.5.535
doi: 10.5535/arm.2019.43.5.535
pubmed: 31693843
pmcid: 6835132
Sun Y, Zehr EP (2019) Training-induced neural plasticity and strength are amplified after stroke. Exerc Sport Sci Rev 47(4):223–229. https://doi.org/10.1249/JES.0000000000000199
doi: 10.1249/JES.0000000000000199
pubmed: 31283528
pmcid: 6887626
Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator of inflammation in disease. Seminars Immunopathol 34(1):43–62. https://doi.org/10.1007/s00281-011-0290-8
doi: 10.1007/s00281-011-0290-8
Shenhar-Tsarfaty S, Ben Assayag E, Bova I, Shopin L, Cohen M, Berliner S, Shapira I, Bornstein NM (2008) Persistent hyperfibrinogenemia in acute ischemic stroke/transient ischemic attack (TIA). Thromb Haemost 99(1):169–173. https://doi.org/10.1160/TH07-08-0484
doi: 10.1160/TH07-08-0484
pubmed: 18217150
Pedersen A, Redfors P, Lundberg L, Gils A, Declerck PJ, Nilsson S, Jood K, Jern C (2016) Haemostatic biomarkers are associated with long-term recurrent vascular events after ischaemic stroke. Thromb Haemost 116(3):537–543. https://doi.org/10.1160/TH15-12-0938
doi: 10.1160/TH15-12-0938
pubmed: 27357914
Hou HQ, Xiang XL, Pan YS, Zhang QH, Li H, Meng X, Wang YJ (2021) Baseline or 90-day fibrinogen levels and long-term outcomes after ischemic stroke or TIA: results from the China national stroke registry III. Atherosclerosis 337:35–41. https://doi.org/10.1016/j.atherosclerosis.2021.10.002
doi: 10.1016/j.atherosclerosis.2021.10.002
pubmed: 34757269
Chen JL, Chen DM, Luo C, Sun Y, Zhao YX, Huang CQ, Zhao KX, Xiao Q (2021) Fibrinogen, fibrin degradation products and risk of sarcopenia. Clin Nutr (Edinburgh, Scotland) 40(8):4830–4837. https://doi.org/10.1016/j.clnu.2021.06.031
doi: 10.1016/j.clnu.2021.06.031
Schinwelski MJ, Sitek EJ, Wąż P, Sławek JW (2019) Prevalence and predictors of post-stroke spasticity and its impact on daily living and quality of life. Neurol Neurochir Pol 53(6):449–457. https://doi.org/10.5603/PJNNS.a2019.0067
doi: 10.5603/PJNNS.a2019.0067
pubmed: 31845749
Lieber RL, Fridén J (2019) Muscle contracture and passive mechanics in cerebral palsy. J Appl Physiol (Bethesda, Md.: 1985) 126(5):1492–1501. https://doi.org/10.1152/japplphysiol.00278.2018
doi: 10.1152/japplphysiol.00278.2018
Kobuchi R, Okuno K, Kusunoki T, Inoue T, Takahashi K (2020) The relationship between sarcopenia and oral sarcopenia in elderly people. J Oral Rehabil 47(5):636–642. https://doi.org/10.1111/joor.12948
doi: 10.1111/joor.12948
pubmed: 32072652
Amarasekera AT, Chang D, Schwarz P, Tan TC (2021) Vascular endothelial dysfunction may be an early predictor of physical frailty and sarcopenia: a meta-analysis of available data from observational studies. Exp Gerontol 148:111260. https://doi.org/10.1016/j.exger.2021.111260
doi: 10.1016/j.exger.2021.111260
pubmed: 33571660
Ganapathy A, Nieves JW (2020) Nutrition and Sarcopenia—what do we know? Nutrients 12(6):1755. https://doi.org/10.3390/nu12061755
doi: 10.3390/nu12061755
pmcid: 7353446
Isanejad M, Sirola J, Mursu J, Rikkonen T, Kröger H, Tuppurainen M, Erkkilä AT (2018) Association of the Baltic Sea and Mediterranean diets with indices of sarcopenia in elderly women, OSPTRE-FPS study. Eur J Nutr 57(4):1435–1448. https://doi.org/10.1007/s00394-017-1422-2
doi: 10.1007/s00394-017-1422-2
pubmed: 28303397
Spira D, Walston J, Buchmann N, Nikolov J, Demuth I, Steinhagen-Thiessen E, Eckardt R, Norman K (2016) Angiotensin-converting enzyme inhibitors and parameters of sarcopenia: relation to muscle mass, strength and function: data from the berlin aging study-II (BASE-II). Drugs Aging 33(11):829–837. https://doi.org/10.1007/s40266-016-0396-8
doi: 10.1007/s40266-016-0396-8
pubmed: 27665105
Vetrano DL, Pisciotta MS, Laudisio A, Lo Monaco MR, Onder G, Brandi V, Fusco D, Di Capua B, Ricciardi D et al (2018) Sarcopenia in Parkinson disease: comparison of different criteria and association with disease severity. J Am Med Direct Assoc 19(6):523–527. https://doi.org/10.1016/j.jamda.2017.12.005
doi: 10.1016/j.jamda.2017.12.005
Cai Y, Feng F, Wei Q, Jiang Z, Ou R, Shang H (2021) Sarcopenia in patients with Parkinson’s disease: a systematic review and meta-analysis. Front Neurol 12:598035. https://doi.org/10.3389/fneur.2021.598035
doi: 10.3389/fneur.2021.598035
pubmed: 33746871
pmcid: 7973225
Peball M, Mahlknecht P, Werkmann M, Marini K, Murr F, Herzmann H, Stockner H, de Marzi R, Heim B, Djamshidian A et al (2019) Prevalence and associated factors of sarcopenia and frailty in Parkinson’s disease: a cross-sectional study. Gerontology 65(3):216–228. https://doi.org/10.1159/000492572。
doi: 10.1159/000492572。
pubmed: 30199864
Lima DP, de Almeida SB, Bonfadini JC, de Luna JRG, de Alencar MS, Pinheiro Neto EB et al (2020) Clinical correlates of sarcopenia and falls in Parkinson’s disease. PloS One 15(3):e0227238. https://doi.org/10.1371/journal.pone.0227238
doi: 10.1371/journal.pone.0227238
pubmed: 32191713
pmcid: 7082018
Chung SJ, Kim YJ, Yoo HS, Jung JH, Baik K, Lee HS, Lee YH, Hong JM, Sohn YH, Lee PH (2021) Temporalis muscle thickness as an indicator of sarcopenia is associated with long-term motor outcomes in Parkinson’s disease. J Gerontol 76(12):2242–2248. https://doi.org/10.1093/gerona/glab082
doi: 10.1093/gerona/glab082
Krenovsky JP, Bötzel K, Ceballos-Baumann A, Fietzek UM, Schoser B, Maetzler W, Ferrari U, Drey M (2020) Interrelation between sarcopenia and the number of motor neurons in patients with parkinsonian syndromes. Gerontology 66(4):409–415. https://doi.org/10.1159/000505590
doi: 10.1159/000505590
pubmed: 32088717
Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V (2022) Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. https://doi.org/10.1038/s41577-022-00684-6
doi: 10.1038/s41577-022-00684-6
pubmed: 35246670
pmcid: 8895080
Pan L, Xie W, Fu X, Lu W, Jin H, Lai J, Zhang A, Yu Y, Li Y, Xiao W (2021) Inflammation and sarcopenia: a focus on circulating inflammatory cytokines. Exp Gerontol 154:111544. https://doi.org/10.1016/j.exger.2021.111544
doi: 10.1016/j.exger.2021.111544
pubmed: 34478826
Wu YN, Chen MH, Chiang PL, Lu CH, Chen HL, Yu CC, Chen YS, Chang YY, Lin WC (2020) Associations between brain structural damage and core muscle loss in patients with Parkinson’s disease. J Clin Med 9(1):239. https://doi.org/10.3390/jcm9010239
doi: 10.3390/jcm9010239
pmcid: 7019762
Lee CY, Chen HL, Chen PC, Chen YS, Chiang PL, Wang CK, Lu CH, Chen MH, Chou KH, Huang YC, Lin WC (2019) Correlation between executive network integrity and sarcopenia in patients with Parkinson’s disease. Int J Environ Res Public Health 16(24):4884. https://doi.org/10.3390/ijerph16244884
doi: 10.3390/ijerph16244884
pmcid: 6950743
Umay E, Yigman ZA, Ozturk EA, Gundogdu I, Koçer BG (2021) Is dysphagia in older patients with Parkinson’s disease associated with sarcopenia? J Nutr Health Aging 25(6):742–747. https://doi.org/10.1007/s12603-021-1618-2
doi: 10.1007/s12603-021-1618-2
pubmed: 34179927
Pradhan S, Kelly VE (2019) Quantifying physical activity in early Parkinson disease using a commercial activity monitor. Parkinsonism Relat Disord 66:171–175. https://doi.org/10.1016/j.parkreldis.2019.08.001
doi: 10.1016/j.parkreldis.2019.08.001
pubmed: 31420310
pmcid: 7065569
Rivadeneyra J, Verhagen O, Bartulos M, Mariscal-Pérez N, Collazo C, Garcia-Bustillo A, Calvo S, Cubo E (2021) The impact of dietary intake and physical activity on body composition in Parkinson’s disease. Move Disord Clin Pract 8(6):896–903. https://doi.org/10.1002/mdc3.13263
doi: 10.1002/mdc3.13263
Karim A, Iqbal MS, Muhammad T, Qaisar R (2022) Evaluation of sarcopenia using biomarkers of the neuromuscular junction in Parkinson’s disease. J Mol Neurosci 72(4):820–829. https://doi.org/10.1007/s12031-022-01970-7
doi: 10.1007/s12031-022-01970-7
pubmed: 35044622
Ramoo K, Hairi NN, Yahya A, Choo WY, Hairi FM, Peramalah D, Kandiben S, Bulgiba A, Ali ZM, Razak IA et al (2022) Longitudinal association between sarcopenia and cognitive impairment among older adults in rural Malaysia. Int J Environ Res Public Health 19(8):4723. https://doi.org/10.3390/ijerph19084723
doi: 10.3390/ijerph19084723
pubmed: 35457592
pmcid: 9025848
de Souza LF, Fontanela LC, Gonçalves C, Mendrano AL, Freitas MA, Danielewicz AL, de Avelar NCP (2021) Cognitive and behavioral factors associated to probable sarcopenia in community-dwelling older adults. Exp Aging Res. https://doi.org/10.1080/0361073X.2021.1939564
doi: 10.1080/0361073X.2021.1939564
pubmed: 34170210
Cipolli GC, Aprahamian I, Borim F, Falcão D, Cachioni M, Melo RC, Batistoni S, Neri AL, Yassuda MS (2021) Probable sarcopenia is associated with cognitive impairment among community-dwelling older adults: results from the FIBRA study. Arq Neuropsiquiatr 79(5):376–383
doi: 10.1590/0004-282x-anp-2020-0186
Zammit AR, Piccinin AM, Duggan EC, Koval A, Clouston S, Robitaille A, Brown CL, Handschuh P, Wu C, Jarry V, Finkel D et al (2021) A coordinated multi-study analysis of the longitudinal association between handgrip strength and cognitive function in older adults. J Gerontol 76(2):229–241. https://doi.org/10.1093/geronb/gbz072
doi: 10.1093/geronb/gbz072
Rasmussen L, Caspi A, Ambler A, Broadbent JM, Cohen HJ, d’Arbeloff T, Elliott M, Hancox RJ, Harrington H, Hogan S et al (2019) Association of neurocognitive and physical function with gait speed in midlife. JAMA Netw Open 2(10):e1913123. https://doi.org/10.1001/jamanetworkopen.2019.13123
doi: 10.1001/jamanetworkopen.2019.13123
pubmed: 31603488
pmcid: 6804027
Chou MY, Nishita Y, Nakagawa T, Tange C, Tomida M, Shimokata H, Otsuka R, Chen LK, Arai H (2019) Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr 19(1):186. https://doi.org/10.1186/s12877-019-1199-7
doi: 10.1186/s12877-019-1199-7
pubmed: 31277579
pmcid: 6612180
Beeri MS, Leugrans SE, Delbono O, Bennett DA, Buchman AS (2021) Sarcopenia is associated with incident Alzheimer’s dementia, mild cognitive impairment, and cognitive decline. J Am Geriatr Soc 69(7):1826–1835. https://doi.org/10.1111/jgs.17206
doi: 10.1111/jgs.17206
pubmed: 33954985
pmcid: 8286176
Salinas-Rodríguez A, Palazuelos-González R, Rivera-Almaraz A, Manrique-Espinoza B (2021) Longitudinal association of sarcopenia and mild cognitive impairment among older Mexican adults. J Cachexia Sarcopenia Muscle 12(6):1848–1859. https://doi.org/10.1002/jcsm.12787
doi: 10.1002/jcsm.12787
pubmed: 34535964
pmcid: 8718052
Zhang T, Zhang Y, Lv Z, Xiang J (2022) Sarcopenia and motoric cognitive risk syndrome: a moderated mediation model. BMC Geriatr 22(1):141. https://doi.org/10.1186/s12877-022-02802-4
doi: 10.1186/s12877-022-02802-4
pubmed: 35183116
pmcid: 8857782
Hsu YH, Liang CK, Chou MY, Wang YC, Liao MC, Chang WC, Hsiao CC, Lai PH, Lin YT (2021) Sarcopenia is independently associated with parietal atrophy in older adults. Exp Gerontol 151:111402. https://doi.org/10.1016/j.exger.2021.111402
doi: 10.1016/j.exger.2021.111402
pubmed: 33984449
Yu JH, Kim R, Jung JM, Park SY, Lee DY, Cho HJ, Kim NH, Yoo HJ, Seo JA, Kim SG, Choi KM, Baik SH, Shin C, Kim NH (2021) Sarcopenia is associated with decreased gray matter volume in the parietal lobe: a longitudinal cohort study. BMC Geriatr 21(1):622. https://doi.org/10.1186/s12877-021-02581-4
doi: 10.1186/s12877-021-02581-4
pubmed: 34727885
pmcid: 8565062
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 108(7):3017–3022. https://doi.org/10.1073/pnas.1015950108
doi: 10.1073/pnas.1015950108
pubmed: 21282661
pmcid: 3041121
Pedersen BK (2019) Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol 15(7):383–392. https://doi.org/10.1038/s41574-019-0174-x
doi: 10.1038/s41574-019-0174-x
pubmed: 30837717
Ogawa Y, Kaneko Y, Sato T, Shimizu S, Kanetaka H, Hanyu H (2018) Sarcopenia and muscle functions at various stages of Alzheimer disease. Front Neurol 9:710. https://doi.org/10.3389/fneur.2018.00710
doi: 10.3389/fneur.2018.00710
pubmed: 30210435
pmcid: 6121095
Kuo YM, Kokjohn TA, Watson MD, Woods AS, Cotter RJ, Sue LI, Kalback WM, Emmerling MR, Beach TG, Roher AE (2000) Elevated abeta42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AbetaPP metabolism. Am J Pathol 156(3):797–805. https://doi.org/10.1016/s0002-9440(10)64947-4
doi: 10.1016/s0002-9440(10)64947-4
pubmed: 10702395
pmcid: 1876838
Ohkawara B, Ito M, Ohno K (2021) Secreted signaling molecules at the neuromuscular junction in physiology and pathology. Int J Mol Sci 22(5):2455. https://doi.org/10.3390/ijms22052455
doi: 10.3390/ijms22052455
pubmed: 33671084
pmcid: 7957818
Torcinaro A, Ricci V, Strimpakos G, De Santa F, Middei S (2021) Peripheral nerve impairment in a mouse model of Alzheimer’s disease. Brain Sci 11(9):1245. https://doi.org/10.3390/brainsci11091245
doi: 10.3390/brainsci11091245
pubmed: 34573265
pmcid: 8465822
Chen X, Miller NM, Afghah Z, Geiger JD (2019) Development of AD-like pathology in skeletal muscle. J Parkinson’s Dis Alzheimer’s Dis. https://doi.org/10.13188/2376-922x.1000028
doi: 10.13188/2376-922x.1000028
Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Pasco JA (2020) Skeletal muscle health and cognitive function: a narrative review. Int J Mol Sci 22(1):255. https://doi.org/10.3390/ijms22010255
doi: 10.3390/ijms22010255
pmcid: 7795998
Beaudart C, Sanchez-Rodriguez D, Locquet M, Reginster JY, Lengelé L, Bruyère O (2019) Malnutrition as a strong predictor of the onset of sarcopenia. Nutrients 11(12):2883. https://doi.org/10.3390/nu11122883
doi: 10.3390/nu11122883
pmcid: 6950107
Gómez-Gómez ME, Zapico SC (2019) Frailty, cognitive decline, neurodegenerative diseases and nutrition interventions. Int J Mol Sci 20(11):2842. https://doi.org/10.3390/ijms20112842
doi: 10.3390/ijms20112842
pmcid: 6600148
Hu F, Liu H, Liu X, Jia S, Zhao W, Zhou L, Zhao Y, Hou L, Xia X, Dong B (2021) Nutritional status mediates the relationship between sarcopenia and cognitive impairment: findings from the WCHAT study. Aging Clin Exp Res 33(12):3215–3222. https://doi.org/10.1007/s40520-021-01883-2
doi: 10.1007/s40520-021-01883-2
pubmed: 34028708
pmcid: 8141547
Taylor MK, Mahnken JD, Sullivan DK (2020) NHANES 2011–2014 reveals cognition of US older adults may benefit from better adaptation to the Mediterranean diet. Nutrients 12(7):1929. https://doi.org/10.3390/nu12071929
doi: 10.3390/nu12071929
pmcid: 7399952
Ansari SA, Emerald BS (2019) The role of insulin resistance and protein O-GlcNAcylation in neurodegeneration. Front Neurosci 13:473. https://doi.org/10.3389/fnins.2019.00473
doi: 10.3389/fnins.2019.00473
pubmed: 31143098
pmcid: 6521730
Jo D, Yoon G, Kim OY, Song J (2022) A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction. Biomed Pharmacother 147:112636. https://doi.org/10.1016/j.biopha.2022.112636
doi: 10.1016/j.biopha.2022.112636
pubmed: 35051857
Nagase T, Tohda C (2021) Skeletal muscle atrophy-induced hemopexin accelerates onset of cognitive impairment in Alzheimer’s disease. J Cachexia Sarcopenia Muscle 12(6):2199–2210. https://doi.org/10.1002/jcsm.12830
doi: 10.1002/jcsm.12830
pubmed: 34658156
pmcid: 8718090
Dalle S, Rossmeislova L, Koppo K (2017) The role of inflammation in age-related sarcopenia. Front Physiol 8:1045. https://doi.org/10.3389/fphys.2017.01045
doi: 10.3389/fphys.2017.01045
pubmed: 29311975
pmcid: 5733049
Kimura N, Aso Y, Yabuuchi K, Ishibashi M, Hori D, Sasaki Y, Nakamichi A, Uesugi S, Fujioka H, Iwao S et al (2019) Modifiable lifestyle factors and cognitive function in older people: a cross-sectional observational study. Front Neurol 10:401. https://doi.org/10.3389/fneur.2019.00401
doi: 10.3389/fneur.2019.00401
pubmed: 31068892
pmcid: 6491512
Gonzalez A, Simon F, Achiardi O, Vilos C, Cabrera D, Cabello-Verrugio C (2021) The critical role of oxidative stress in sarcopenic obesity. Oxid Med Cell Longev 2021:4493817. https://doi.org/10.1155/2021/4493817
doi: 10.1155/2021/4493817
pubmed: 34676021
pmcid: 8526202
Franzoni F, Scarfò G, Guidotti S, Fusi J, Asomov M, Pruneti C (2021) Oxidative stress and cognitive decline: the neuroprotective role of natural antioxidants. Front Neurosci 15:729757. https://doi.org/10.3389/fnins.2021.729757
doi: 10.3389/fnins.2021.729757
pubmed: 34720860
pmcid: 8548611
Sekhar RV (2021) GlyNAC supplementation improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, aging hallmarks, metabolic defects, muscle strength, cognitive decline, and body composition: implications for healthy aging. J Nutr 151(12):3606–3616. https://doi.org/10.1093/jn/nxab309
doi: 10.1093/jn/nxab309
pubmed: 34587244
Gariballa S, Alessa A (2020) Associations between low muscle mass, blood-borne nutritional status and mental health in older patients. BMC Nutr 6:6. https://doi.org/10.1186/s40795-019-0330-7
doi: 10.1186/s40795-019-0330-7
pubmed: 32190345
pmcid: 7066831
Huang CY, Hwang AC, Liu LK, Lee WJ, Chen LY, Peng LN, Lin MH, Chen LK (2016) Association of Dynapenia, Sarcopenia, and cognitive impairment among community-dwelling older Taiwanese. Rejuvenation Res 19(1):71–78. https://doi.org/10.1089/rej.2015.1710
doi: 10.1089/rej.2015.1710
pubmed: 26165544
Olgun Yazar H, Yazar T (2019) Prevalence of sarcopenia in patients with geriatric depression diagnosis. Ir J Med Sci 188(3):931–938. https://doi.org/10.1007/s11845-018-01957-7
doi: 10.1007/s11845-018-01957-7
pubmed: 30610679
Li Z, Tong X, Ma Y, Bao T, Yue J (2022) Prevalence of depression in patients with sarcopenia and correlation between the two diseases: systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 13(1):128–144. https://doi.org/10.1002/jcsm.12908
doi: 10.1002/jcsm.12908
pubmed: 34997702
pmcid: 8818614
Chen X, Guo J, Han P, Fu L, Jia L, Yu H, Yu X, Hou L, Wang L, Zhang W et al (2019) Twelve-month incidence of depressive symptoms in suburb-dwelling Chinese older adults: role of sarcopenia. J Am Med Dir Assoc 20(1):64–69. https://doi.org/10.1016/j.jamda.2018.07.017
doi: 10.1016/j.jamda.2018.07.017
pubmed: 30268631
Chen X, Han P, Yu X, Zhang Y, Song P, Liu Y, Jiang Z, Tao Z, Shen S, Wu Y et al (2021) Relationships between sarcopenia, depressive symptoms, and mild cognitive impairment in Chinese community-dwelling older adults. J Affect Disord 286:71–77. https://doi.org/10.1016/j.jad.2021.02.067
doi: 10.1016/j.jad.2021.02.067
pubmed: 33714172
Jin Y, Kang S, Kang H (2021) Individual and synergistic relationships of low muscle mass and low muscle function with depressive symptoms in Korean older adults. Int J Environ Res Public Health 18(19):10129. https://doi.org/10.3390/ijerph181910129
doi: 10.3390/ijerph181910129
pubmed: 34639432
pmcid: 8507727
Rana T, Behl T, Sehgal A, Srivastava P, Bungau S (2021) Unfolding the role of BDNF as a biomarker for treatment of depression. J Mol Neurosci 71(10):2008–2021. https://doi.org/10.1007/s12031-020-01754-x
doi: 10.1007/s12031-020-01754-x
pubmed: 33230708
Gelle T, Samey RA, Plansont B, Bessette B, Jauberteau-Marchan MO, Lalloué F, Girard M (2021) BDNF and pro-BDNF in serum and exosomes in major depression: evolution after antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 109:110229. https://doi.org/10.1016/j.pnpbp.2020.110229
doi: 10.1016/j.pnpbp.2020.110229
pubmed: 33358963
Burtscher J, Millet GP, Place N, Kayser B, Zanou N (2021) The muscle-brain axis and neurodegenerative diseases: the key role of mitochondria in exercise-induced neuroprotection. Int J Mol Sci 22(12):6479. https://doi.org/10.3390/ijms22126479
doi: 10.3390/ijms22126479
pubmed: 34204228
pmcid: 8235687
Miyazaki S, Iino N, Koda R, Narita I, Kaneko Y (2021) Brain-derived neurotrophic factor is associated with sarcopenia and frailty in Japanese hemodialysis patients. Geriatr Gerontol Int 21(1):27–33. https://doi.org/10.1111/ggi.14089
doi: 10.1111/ggi.14089
pubmed: 33215785
Chu AL, Hickman M, Steel N, Jones PB, Davey Smith G, Khandaker GM (2021) Inflammation and depression: a public health perspective. Brain Behav Immun 95:1–3. https://doi.org/10.1016/j.bbi.2021.04.015
doi: 10.1016/j.bbi.2021.04.015
pubmed: 33882327
Delibaş DH, Eşkut N, İlhan B, Erdoğan E, Top Kartı D, Yılmaz Küsbeci Ö, Bahat G (2021) Clarifying the relationship between sarcopenia and depression in geriatric outpatients. Aging Male 24(1):29–36. https://doi.org/10.1080/13685538.2021.1936482
doi: 10.1080/13685538.2021.1936482
pubmed: 34151708
Chen GQ, Wang GP, Lian Y (2022) Relationships between depressive symptoms, dietary inflammatory potential, and sarcopenia: mediation analyses. Front Nutr 9:844917. https://doi.org/10.3389/fnut.2022.844917
doi: 10.3389/fnut.2022.844917
pubmed: 35252313
pmcid: 8891449
Oliva Ramirez A, Keenan A, Kalau O, Worthington E, Cohen L, Singh S (2021) Prevalence and burden of multiple sclerosis-related fatigue: a systematic literature review. BMC Neurol 21(1):468. https://doi.org/10.1186/s12883-021-02396-1
doi: 10.1186/s12883-021-02396-1
pubmed: 34856949
pmcid: 8638268
Fortune J, Norris M, Stennett A, Kilbride C, Lavelle G, Hendrie W, Victor C, Ryan JM (2021) Patterns and correlates of sedentary behaviour among people with multiple sclerosis: a cross-sectional study. Sci Rep 11(1):20346. https://doi.org/10.1038/s41598-021-99631-z
doi: 10.1038/s41598-021-99631-z
pubmed: 34645876
pmcid: 8514488
Yuksel H, Balaban M, Tan OO, Mungan S (2022) Sarcopenia in patients with multiple sclerosis. Multiple Sclerosis Relat Disord 58:103471. https://doi.org/10.1016/j.msard.2021.103471
doi: 10.1016/j.msard.2021.103471
Rudroff T, Kindred JH, Ketelhut NB (2016) Fatigue in multiple sclerosis: misconceptions and future research directions. Front Neurol 7:122. https://doi.org/10.3389/fneur.2016.00122
doi: 10.3389/fneur.2016.00122
pubmed: 27531990
pmcid: 4969300
Kalb R, Brown TR, Coote S, Costello K, Dalgas U, Garmon E, Giesser B, Halper J, Karpatkin H, Keller J et al (2020) Exercise and lifestyle physical activity recommendations for people with multiple sclerosis throughout the disease course. Multiple Sclerosis (Houndmills, Basingstoke, England) 26(12):1459–1469. https://doi.org/10.1177/1352458520915629
doi: 10.1177/1352458520915629
Taul-Madsen L, Connolly L, Dennett R, Freeman J, Dalgas U, Hvid LG (2021) Is aerobic or resistance training the most effective exercise modality for improving lower extremity physical function and perceived fatigue in people with multiple sclerosis? A systematic review and meta-analysis. Arch Phys Med Rehabil 102(10):2032–2048. https://doi.org/10.1016/j.apmr.2021.03.026
doi: 10.1016/j.apmr.2021.03.026
pubmed: 33901439
Iyer SR, Shah SB, Lovering RM (2021) The neuromuscular junction: roles in aging and neuromuscular disease. Int J Mol Sci 22(15):8058. https://doi.org/10.3390/ijms22158058
doi: 10.3390/ijms22158058
pubmed: 34360831
pmcid: 8347593
Deschenes MR, Flannery R, Hawbaker A, Patek L, Mifsud M (2022) Adaptive remodeling of the neuromuscular junction with aging. Cells 11(7):1150. https://doi.org/10.3390/cells11071150
doi: 10.3390/cells11071150
pubmed: 35406714
pmcid: 8997609
Chang CC, Chen YK, Chiu HC, Yeh JH (2021) Assessment of sarcopenia and obesity in patients with myasthenia gravis using dual-energy x-ray absorptiometry: a cross-sectional study. J Personaliz Med 11(11):1139. https://doi.org/10.3390/jpm11111139
doi: 10.3390/jpm11111139
Qiao L, Zhang Y, Ban R, Lin Y, Pu C, Shi Q (2021) Muscular pathological features in patients with myasthenia gravis. Clin Neuropathol 40(6):319–327. https://doi.org/10.5414/NP301382
doi: 10.5414/NP301382
pubmed: 34236310
Velonakis G, Papadopoulos VE, Karavasilis E, Filippiadis DK, Zouvelou V (2021) MRI evidence of extraocular muscle atrophy and fatty replacement in myasthenia gravis. Neuroradiology 63(9):1531–1538. https://doi.org/10.1007/s00234-021-02753-4
doi: 10.1007/s00234-021-02753-4
pubmed: 34232334
Nakakubo S, Doi T, Tsutsumimoto K, Kurita S, Ishii H, Shimada H (2021) Sleep duration and progression to sarcopenia in Japanese community-dwelling older adults: a 4 year longitudinal study. J Cachexia Sarcopenia Muscle 12(4):1034–1041. https://doi.org/10.1002/jcsm.12735
doi: 10.1002/jcsm.12735
pubmed: 34190427
pmcid: 8350197
Smith L, Shin JI, Veronese N, Soysal P, López Sánchez GF, Pizzol D, Demurtas J, Tully MA, Barnett Y, Butler L, Koyanagi A (2022) Sleep duration and sarcopenia in adults aged ≥ 65 years from low and middle-income countries. Aging Clin Exp Res. https://doi.org/10.1007/s40520-022-02074-3
doi: 10.1007/s40520-022-02074-3
pubmed: 36136237
Rubio-Arias JÁ, Rodríguez-Fernández R, Andreu L, Martínez-Aranda LM, Martínez-Rodriguez A, Ramos-Campo DJ (2019) Effect of sleep quality on the prevalence of sarcopenia in older adults: a systematic review with meta-analysis. J Clin Med 8(12):2156. https://doi.org/10.3390/jcm8122156
doi: 10.3390/jcm8122156
pmcid: 6947616
Pourmotabbed A, Ghaedi E, Babaei A, Mohammadi H, Khazaie H, Jalili C, Symonds ME, Moradi S, Miraghajani M (2020) Sleep duration and sarcopenia risk: a systematic review and dose-response meta-analysis. Sleep Breat 24(4):1267–1278. https://doi.org/10.1007/s11325-019-01965-6
doi: 10.1007/s11325-019-01965-6
Huang WC, Lin CY, Togo F, Lai TF, Hsueh MC, Liao Y, Park H, Kumagai S (2022) Nonlinear associations between sleep patterns and sarcopenia risks in older adults. J Clin Sleep Med 18(3):731–738. https://doi.org/10.5664/jcsm.9698
doi: 10.5664/jcsm.9698
pubmed: 34608860
Szlejf C, Suemoto CK, Drager LF, Griep RH, Fonseca M, Diniz M, Lotufo PA, Benseãor IM (2021) Association of sleep disturbances with sarcopenia and its defining components: the ELSA-Brasil study. Brazil J Med Biol Res 54(12):e11539. https://doi.org/10.1590/1414-431X2021e11539
doi: 10.1590/1414-431X2021e11539
Saner NJ, Lee MJ, Pitchford NW, Kuang J, Roach GD, Garnham A, Stokes T, Phillips SM, Bishop DJ, Bartlett JD (2020) The effect of sleep restriction, with or without high-intensity interval exercise, on myofibrillar protein synthesis in healthy young men. J Physiol 598(8):1523–1536. https://doi.org/10.1113/JP278828
doi: 10.1113/JP278828
pubmed: 32078168
Mohammadi H, Rezaei M, Sharafkhaneh A, Khazaie H, Ghadami MR (2020) Serum testosterone/cortisol ratio in people with obstructive sleep apnea. J Clin Lab Anal 34(1):e23011. https://doi.org/10.1002/jcla.23011
doi: 10.1002/jcla.23011
pubmed: 31549459
Prokopidis K, Dionyssiotis Y (2021) Effects of sleep deprivation on sarcopenia and obesity: a narrative review of randomized controlled and crossover trials. J Frailty Sarcopenia Falls 6(2):50–56. https://doi.org/10.22540/JFSF-06-050
doi: 10.22540/JFSF-06-050
pubmed: 34131601
pmcid: 8173530
Padilla CJ, Harrigan ME, Harris H, Schwab JM, Rutkove SB, Rich MM, Clark BC, Arnold WD (2021) Profiling age-related muscle weakness and wasting: neuromuscular junction transmission as a driver of age-related physical decline. GeroScience 43(3):1265–1281. https://doi.org/10.1007/s11357-021-00369-3
doi: 10.1007/s11357-021-00369-3
pubmed: 33895959
pmcid: 8190265
Kurihara M, Bamba S, Yasuhara S, Itoh A, Nagao T, Nakanishi N, Nakamura R, Ogawa N, Kitamura A, Yamakawa I, Kim H, Sanada M, Urushitani M, Sasaki M (2021) Factors affecting energy metabolism and prognosis in patients with amyotrophic lateral sclerosis. Ann Nutr Metab 77(4):236–243. https://doi.org/10.1159/000518908
doi: 10.1159/000518908
pubmed: 34515052
Le Gall L, Duddy WJ, Martinat C, Mariot V, Connolly O, Milla V, Anakor E, Ouandaogo ZG, Millecamps S, Lainé J et al (2022) Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles. J Cachexia Sarcopenia Muscle 13(2):1385–1402. https://doi.org/10.1002/jcsm.12945
doi: 10.1002/jcsm.12945
pubmed: 35194965
pmcid: 8978001
Re Cecconi AD, Barone M, Gaspari S, Tortarolo M, Bendotti C, Porcu L, Terribile G, Piccirillo R (2022) The p97-Nploc4 ATPase complex plays a role in muscle atrophy during cancer and amyotrophic lateral sclerosis. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.13011
doi: 10.1002/jcsm.13011
pubmed: 35611892
pmcid: 9397562