Off-the-Shelf Chimeric Antigen Receptor Immune Cells from Human Pluripotent Stem Cells.


Journal

Cancer treatment and research
ISSN: 0927-3042
Titre abrégé: Cancer Treat Res
Pays: United States
ID NLM: 8008541

Informations de publication

Date de publication:
2022
Historique:
entrez: 13 5 2022
pubmed: 14 5 2022
medline: 18 5 2022
Statut: ppublish

Résumé

Autologous chimeric antigen receptor (CAR) T cells have expanded the scope and therapeutic potential of anti-cancer therapy. Nevertheless, autologous CAR-T therapy has been challenging due to labor some manufacturing processes for every patient, and the cost due to the complexity of the process. Moreover, T cell dysfunction results from the immunosuppressive tumor microenvironment in certain patients. Considering technical challenges in autologous donors, the development of safe and efficient allogeneic CAR-T therapy will address these issues. Since the advent of the generation of immune cells from pluripotent stem cells (PSCs), numerous studies focus on the off-the-shelf generation of CAR-immune cells derived from the universal donor PSCs, which simplifies the manufacturing process and standardizes CAR-T products. In this review, we will discuss advances in the generation of immune cells from PSCs, together with the potential and perspectives of CAR-T, CAR-macrophages, and CAR-natural killer (NK) cells in cancer treatment. The combination of PSC-derived immune cells and CAR engineering will pave the way for developing next-generation cancer immunotherapy.

Identifiants

pubmed: 35551663
doi: 10.1007/978-3-030-96376-7_9
doi:

Substances chimiques

Receptors, Chimeric Antigen 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

255-274

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Dobosz P, Dzieciatkowski T (2019) The intriguing history of cancer immunotherapy. Front Immunol 10:2965
pubmed: 31921205 pmcid: 6928196 doi: 10.3389/fimmu.2019.02965
Pham T, Roth S, Kong J, Guerra G, Narasimhan V, Pereira L et al (2018) An update on immunotherapy for solid tumors: a review. Ann Surg Oncol 25(11):3404–3412
pubmed: 30039324 doi: 10.1245/s10434-018-6658-4
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365
pubmed: 29567707 doi: 10.1126/science.aar6711
Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028
pubmed: 2513569 pmcid: 298636 doi: 10.1073/pnas.86.24.10024
Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 90(2):720–724
pubmed: 8421711 pmcid: 45737 doi: 10.1073/pnas.90.2.720
Lee JM (2019) When CAR meets stem cells. Int J Mol Sci 20(8)
Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S et al (1987) Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 149(3):960–968
pubmed: 3122749 doi: 10.1016/0006-291X(87)90502-X
Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N et al (2006) CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66(22):10995–11004
pubmed: 17108138 doi: 10.1158/0008-5472.CAN-06-0160
Finney HM, Lawson AD, Bebbington CR, Weir AN (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 161(6):2791–2797
pubmed: 9743337
Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733
pubmed: 21830940 pmcid: 3387277 doi: 10.1056/NEJMoa1103849
Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38
June CH, Sadelain M (2018) Chimeric antigen receptor therapy. N Engl J Med 379(1):64–73
pubmed: 29972754 pmcid: 7433347 doi: 10.1056/NEJMra1706169
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448
pubmed: 29385370 pmcid: 5996391 doi: 10.1056/NEJMoa1709866
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377(26):2531–2544
pubmed: 29226797 pmcid: 5882485 doi: 10.1056/NEJMoa1707447
Tang XY, Sun Y, Zhang A, Hu GL, Cao W, Wang DH et al (2016) Third-generation CD28/4-1BB chimeric antigen receptor T cells for chemotherapy relapsed or refractory acute lymphoblastic leukaemia: a non-randomised, open-label phase I trial protocol. BMJ Open 6(12):e013904
Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM et al (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 106(9):3360–3365
pubmed: 19211796 pmcid: 2651342 doi: 10.1073/pnas.0813101106
Chmielewski M, Kopecky C, Hombach AA, Abken H (2011) IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71(17):5697–5706
pubmed: 21742772 doi: 10.1158/0008-5472.CAN-11-0103
Diaconu I, Ballard B, Zhang M, Chen Y, West J, Dotti G et al (2017) Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther 25(3):580–592
pubmed: 28187946 pmcid: 5363196 doi: 10.1016/j.ymthe.2017.01.011
Zhou X, Tu S, Wang C, Huang R, Deng L, Song C et al (2020) Phase I trial of fourth-generation anti-CD19 chimeric antigen receptor T cells against relapsed or refractory B cell non-Hodgkin Lymphomas. Front Immunol 11:564099
Chmielewski M, Abken H (2015) TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15(8):1145–1154
pubmed: 25985798 doi: 10.1517/14712598.2015.1046430
Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS et al (2016) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164(4):770–779
pubmed: 26830879 pmcid: 4752902 doi: 10.1016/j.cell.2016.01.011
Cho JH, Collins JJ, Wong WW (2018) Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173(6):1426–38 e11
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP et al (2019) Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 380(1):45–56
pubmed: 30501490 doi: 10.1056/NEJMoa1804980
Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO et al (2019) Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 20(1):31–42
pubmed: 30518502 doi: 10.1016/S1470-2045(18)30864-7
Sermer D, Brentjens R (2019) CAR T-cell therapy: full speed ahead. Hematol Oncol 37(Suppl 1):95–100
pubmed: 31187533 doi: 10.1002/hon.2591
Lim F, Ang SO (2020) Emerging CAR landscape for cancer immunotherapy. Biochem Pharmacol 178:114051
Knochelmann HM, Smith AS, Dwyer CJ, Wyatt MM, Mehrotra S, Paulos CM (2018) CAR T cells in solid tumors: blueprints for building effective therapies. Front Immunol 9:1740
pubmed: 30140266 pmcid: 6094980 doi: 10.3389/fimmu.2018.01740
Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES et al (2015) Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21(5):524–529
pubmed: 25849134 pmcid: 4425589 doi: 10.1038/nm.3833
Zhang E, Gu J, Xu H (2018) Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 17(1):7
pubmed: 29329591 pmcid: 5767005 doi: 10.1186/s12943-018-0759-3
Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21(6):1258–1266
pubmed: 25770293 pmcid: 4374162 doi: 10.1158/1078-0432.CCR-14-1429
Thommen DS, Schumacher TN (2018) T cell dysfunction in cancer. Cancer Cell 33(4):547–562
pubmed: 29634943 pmcid: 7116508 doi: 10.1016/j.ccell.2018.03.012
Zakrzewski JL, Suh D, Markley JC, Smith OM, King C, Goldberg GL et al (2008) Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat Biotechnol 26(4):453–461
pubmed: 18376399 pmcid: 2731996 doi: 10.1038/nbt1395
Kwoczek J, Riese SB, Tischer S, Bak S, Lahrberg J, Oelke M et al (2018) Cord blood-derived T cells allow the generation of a more naive tumor-reactive cytotoxic T-cell phenotype. Transfusion 58(1):88–99
pubmed: 29023759 doi: 10.1111/trf.14365
Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L (2020) ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 19(3):185–199
pubmed: 31900462 doi: 10.1038/s41573-019-0051-2
Patel SJ, Yamauchi T, Ito F (2019) Induced pluripotent stem cell-derived t cells for cancer immunotherapy. Surg Oncol Clin N Am 28(3):489–504
pubmed: 31079802 pmcid: 6516087 doi: 10.1016/j.soc.2019.02.005
Zhang L, Tian L, Dai X, Yu H, Wang J, Lei A et al (2020) Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol 13(1):153
pubmed: 33176869 pmcid: 7656711 doi: 10.1186/s13045-020-00983-2
Saetersmoen ML, Hammer Q, Valamehr B, Kaufman DS, Malmberg KJ (2019) Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Semin Immunopathol 41(1):59–68
pubmed: 30361801 doi: 10.1007/s00281-018-0721-x
Butler CL, Valenzuela NM, Thomas KA, Reed EF (2017) Not all antibodies are created equal: factors that influence antibody mediated rejection. J Immunol Res 2017:7903471
pubmed: 28373996 pmcid: 5360970 doi: 10.1155/2017/7903471
Ciurea SO, Cao K, Fernandez-Vina M, Kongtim P, Malki MA, Fuchs E et al (2018) The European Society for blood and marrow transplantation (EBMT) consensus guidelines for the detection and treatment of donor-specific anti-HLA antibodies (DSA) in haploidentical hematopoietic cell transplantation. Bone Marrow Transplant 53(5):521–534
pubmed: 29335625 pmcid: 7232774 doi: 10.1038/s41409-017-0062-8
Frame JN, Collins NH, Cartagena T, Waldmann H, O'Reilly RJ, Dupont B et al (1989) T cell depletion of human bone marrow. Comparison of Campath-1 plus complement, anti-T cell ricin a chain immunotoxin, and soybean agglutinin alone or in combination with sheep erythrocytes or immunomagnetic beads. Transplantation 47(6):984–8
Champlin RE, Passweg JR, Zhang MJ, Rowlings PA, Pelz CJ, Atkinson KA et al (2000) T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood 95(12):3996–4003
pubmed: 10845940
Radestad E, Wikell H, Engstrom M, Watz E, Sundberg B, Thunberg S et al (2014) Alpha/beta T-cell depleted grafts as an immunological booster to treat graft failure after hematopoietic stem cell transplantation with HLA-matched related and unrelated donors. J Immunol Res 2014:578741
Abdelhakim H, Abdel-Azim H, Saad A (2017) Role of alphabeta T cell depletion in prevention of graft versus host disease. Biomedicines 5(3)
Zeiser R, Blazar BR (2017) Acute graft-versus-host disease—biologic process, prevention, and therapy. N Engl J Med 377(22):2167–2179
pubmed: 29171820 pmcid: 6034180 doi: 10.1056/NEJMra1609337
Baker MB, Altman NH, Podack ER, Levy RB (1996) The role of cell-mediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J Exp Med 183(6):2645–2656
pubmed: 8676085 doi: 10.1084/jem.183.6.2645
Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S et al (207) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9(374)
Bishop DC, Clancy LE, Simms R, Burgess J, Mathew G, Moezzi L et al (2021) Development of CAR T-cell lymphoma in two of ten patients effectively treated with piggyBac modified CD19 CAR T-cells. Blood
Xu X, Sun Q, Liang X, Chen Z, Zhang X, Zhou X et al (2019) Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front Immunol 10:2664
pubmed: 31798590 pmcid: 6863137 doi: 10.3389/fimmu.2019.02664
Kailayangiri S, Altvater B, Wiebel M, Jamitzky S, Rossig C (2020) Overcoming heterogeneity of antigen expression for effective CAR T cell targeting of cancers. Cancers (Basel) 12(5)
Sutherland AR, Owens MN, Geyer CR (2020) Modular chimeric antigen receptor systems for universal CAR T cell retargeting. Int J Mol Sci 21(19)
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147
pubmed: 9804556 doi: 10.1126/science.282.5391.1145
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676
pubmed: 16904174 doi: 10.1016/j.cell.2006.07.024
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872
pubmed: 18035408 doi: 10.1016/j.cell.2007.11.019
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920
pubmed: 18029452 doi: 10.1126/science.1151526
Zhou T, Benda C, Duzinger S, Huang Y, Li X, Li Y et al (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22(7):1221–1228
pubmed: 21636641 pmcid: 3137570 doi: 10.1681/ASN.2011010106
Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G et al (2017) HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol 35(8):765–772
pubmed: 28504668 pmcid: 5548598 doi: 10.1038/nbt.3860
Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C et al (2019) Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 37(3):252–258
pubmed: 30778232 pmcid: 6419516 doi: 10.1038/s41587-019-0016-3
Han X, Wang M, Duan S, Franco PJ, Kenty JH, Hedrick P et al (2019) Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci U S A 116(21):10441–10446
pubmed: 31040209 pmcid: 6535035 doi: 10.1073/pnas.1902566116
Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M et al (2020) Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 38(8):947–953
pubmed: 32361713 pmcid: 7883632 doi: 10.1038/s41587-020-0462-y
Graham C, Jozwik A, Pepper A, Benjamin R (2018) Allogeneic CAR-T cells: more than ease of access? Cells 7(10)
Alcover A, Alarcon B, Di Bartolo V (2018) Cell biology of T cell receptor expression and regulation. Annu Rev Immunol 36:103–125
pubmed: 29261409 doi: 10.1146/annurev-immunol-042617-053429
Zhang N, Bevan MJ (2011) CD8(+) T cells: foot soldiers of the immune system. Immunity 35(2):161–168
pubmed: 21867926 pmcid: 3303224 doi: 10.1016/j.immuni.2011.07.010
Kennedy M, Awong G, Sturgeon CM, Ditadi A, LaMotte-Mohs R, Zuniga-Pflucker JC et al (2012) T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep 2(6):1722–1735
pubmed: 23219550 doi: 10.1016/j.celrep.2012.11.003
Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T et al (2009) Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol 182(11):6879–6888
pubmed: 19454684 doi: 10.4049/jimmunol.0803670
Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398
pubmed: 23550147 pmcid: 3667586 doi: 10.1158/2159-8290.CD-12-0548
Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M et al (2013) Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol 31(10):928–933
pubmed: 23934177 pmcid: 5722218 doi: 10.1038/nbt.2678
Montel-Hagen A, Seet CS, Li S, Chick B, Zhu Y, Chang P et al (2019) Organoid-induced differentiation of conventional T cells from human pluripotent stem cells. Cell Stem Cell 24(3):376–89 e8
Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D et al (2013) Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12(1):114–126
pubmed: 23290140 doi: 10.1016/j.stem.2012.11.002
From Pluripotent Stem to CAR T Cells (2018) Cancer Discov 8(6):OF5
Terren I, Orrantia A, Vitalle J, Zenarruzabeitia O, Borrego F (2019) NK cell metabolism and tumor microenvironment. Front Immunol 10:2278
pubmed: 31616440 pmcid: 6769035 doi: 10.3389/fimmu.2019.02278
Becker PS, Suck G, Nowakowska P, Ullrich E, Seifried E, Bader P et al (2016) Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol Immunother 65(4):477–484
pubmed: 26810567 pmcid: 4826432 doi: 10.1007/s00262-016-1792-y
Lee SH, Miyagi T, Biron CA (2007) Keeping NK cells in highly regulated antiviral warfare. Trends Immunol 28(6):252–259
pubmed: 17466596 doi: 10.1016/j.it.2007.04.001
Roda JM, Parihar R, Magro C, Nuovo GJ, Tridandapani S, Carson WE 3rd (2006) Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells. Cancer Res 66(1):517–526
pubmed: 16397268 doi: 10.1158/0008-5472.CAN-05-2429
Fauriat C, Long EO, Ljunggren HG, Bryceson YT (2010) Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115(11):2167–2176
pubmed: 19965656 pmcid: 2844017 doi: 10.1182/blood-2009-08-238469
Pipkin ME, Lieberman J (2007) Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 19(3):301–308
pubmed: 17433871 doi: 10.1016/j.coi.2007.04.011
Trapani JA, Bird PI (2008) A renaissance in understanding the multiple and diverse functions of granzymes? Immunity 29(5):665–667
pubmed: 19006688 doi: 10.1016/j.immuni.2008.10.002
Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3(5):413–425
pubmed: 12766763 doi: 10.1038/nri1088
Woll PS, Martin CH, Miller JS, Kaufman DS (2005) Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 175(8):5095–5103
pubmed: 16210613 doi: 10.4049/jimmunol.175.8.5095
Woll PS, Grzywacz B, Tian X, Marcus RK, Knorr DA, Verneris MR et al (2009) Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 113(24):6094–6101
pubmed: 19365083 pmcid: 2699231 doi: 10.1182/blood-2008-06-165225
Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJ et al (2013) Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2(4):274–283
pubmed: 23515118 pmcid: 3659832 doi: 10.5966/sctm.2012-0084
Bock AM, Knorr D, Kaufman DS (2013) Development, expansion, and in vivo monitoring of human NK cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). J Vis Exp (74):e50337
Li Y, Hermanson DL, Moriarity BS, Kaufman DS (2018) Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance antitumor activity. Cell Stem Cell 23(2):181–92 e5
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845
pubmed: 20966214 pmcid: 3719181 doi: 10.1126/science.1194637
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90
pubmed: 22442384 doi: 10.1126/science.1219179
Lavin Y, Merad M (2013) Macrophages: gatekeepers of tissue integrity. Cancer Immunol Res 1(4):201–209
pubmed: 24777851 pmcid: 4144820 doi: 10.1158/2326-6066.CIR-13-0117
Serbina NV, Jia T, Hohl TM, Pamer EG (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452
pubmed: 18303997 pmcid: 2921669 doi: 10.1146/annurev.immunol.26.021607.090326
Anderson NR, Minutolo NG, Gill S, Klichinsky M (2021) Macrophage-based approaches for cancer immunotherapy. Cancer Res 81(5):1201–1208
pubmed: 33203697 doi: 10.1158/0008-5472.CAN-20-2990
Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y et al (2021) CAR-macrophage: a new immunotherapy candidate against solid tumors. Biomed Pharmacother 139:111605
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440
pubmed: 29319160 doi: 10.1002/jcp.26429
Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820
pubmed: 20303872 doi: 10.1016/j.cell.2010.01.022
Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264(1):182–203
pubmed: 25703560 pmcid: 4368383 doi: 10.1111/imr.12266
Ohta R, Sugimura R, Niwa A, Saito MK (2019) Hemogenic endothelium differentiation from human pluripotent stem cells in a feeder- and xeno-free defined condition. J Vis Exp (148)
Zhang W, Liu L, Su H, Liu Q, Shen J, Dai H et al (2019) Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br J Cancer 121(10):837–845
pubmed: 31570753 pmcid: 6889154 doi: 10.1038/s41416-019-0578-3
Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB et al (2018) Chimeric antigen receptors that trigger phagocytosis. Elife vol 7
Ueda T, Kumagai A, Iriguchi S, Yasui Y, Miyasaka T, Nakagoshi K et al (2020) Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci 111(5):1478–1490
pubmed: 32133731 pmcid: 7226201 doi: 10.1111/cas.14374
Arias J, Yu J, Varshney M, Inzunza J, Nalvarte I (2021) HSC and iPS cell-derived CAR-NK cells as reliable cell-based therapy solutions. Stem Cells Transl Med
Detela G, Lodge A (2019) EU regulatory pathways for atmps: standard, accelerated and adaptive pathways to marketing authorisation. Mol Ther Methods Clin Dev 13:205–232
pubmed: 30815512 pmcid: 6378853 doi: 10.1016/j.omtm.2019.01.010
Albinger N, Hartmann J, Ullrich E (2021) Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther
Lupo KB, Matosevic S (2019) Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers (Basel) 11(6)
Chou CK, Turtle CJ (2019) Insight into mechanisms associated with cytokine release syndrome and neurotoxicity after CD19 CAR-T cell immunotherapy. Bone Marrow Transplant 54(Suppl 2):780–784
pubmed: 31431714 doi: 10.1038/s41409-019-0602-5
Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J (2020) CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine 59:102975
Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R et al (2020) Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 382(6):545–553
pubmed: 32023374 pmcid: 7101242 doi: 10.1056/NEJMoa1910607
Salter AI, Pont MJ, Riddell SR (2018) Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood 131(24):2621–2629
pubmed: 29728402 pmcid: 6032892 doi: 10.1182/blood-2018-01-785840
Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S et al (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24(1):20–28
pubmed: 29155426 doi: 10.1038/nm.4441
Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N et al (2017) Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood 130(15):1713–1721
pubmed: 28830889 pmcid: 5649080 doi: 10.1182/blood-2017-04-780155
Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, Witt K, Lladser A, Chmielewski M et al (2016) Coexpressed catalase protects chimeric antigen receptor-redirected T Cells as well as Bystander Cells from oxidative stress-induced loss of antitumor activity. J Immunol 196(2):759–766
pubmed: 26673145 doi: 10.4049/jimmunol.1401710
Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S et al (2016) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res 76(6):1578–1590
pubmed: 26979791 pmcid: 4800826 doi: 10.1158/0008-5472.CAN-15-2524
Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ et al (2018) Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances antitumor efficacy in vivo. Nat Biotechnol 36(9):847–856
pubmed: 30102295 pmcid: 6126939 doi: 10.1038/nbt.4195
Peng W, Ye Y, Rabinovich BA, Liu C, Lou Y, Zhang M et al (2010) Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res 16(22):5458–5468
pubmed: 20889916 pmcid: 3476703 doi: 10.1158/1078-0432.CCR-10-0712
Moon EK, Carpenito C, Sun J, Wang LC, Kapoor V, Predina J et al (2011) Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 17(14):4719–4730
pubmed: 21610146 pmcid: 3612507 doi: 10.1158/1078-0432.CCR-11-0351
Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP et al (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 19(4):751–759
pubmed: 21285960 pmcid: 3070103 doi: 10.1038/mt.2010.313
Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K et al (2018) Engineered tumor-targeted T Cells mediate enhanced antitumor efficacy both directly and through activation of the endogenous immune system. Cell Rep 23(7):2130–2141
pubmed: 29768210 pmcid: 5986286 doi: 10.1016/j.celrep.2018.04.051
Krenciute G, Prinzing BL, Yi Z, Wu MF, Liu H, Dotti G et al (2017) Transgenic expression of IL15 Improves antiglioma activity of IL13Ralpha2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 5(7):571–581
pubmed: 28550091 pmcid: 5746871 doi: 10.1158/2326-6066.CIR-16-0376
Hartmann J, Schussler-Lenz M, Bondanza A, Buchholz CJ (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 9(9):1183–1197
pubmed: 28765140 pmcid: 5582407 doi: 10.15252/emmm.201607485
Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130
pubmed: 27980341 doi: 10.1038/nrd.2016.245
Sachdeva M, Duchateau P, Depil S, Poirot L, Valton J (2019) Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J Biol Chem 294(14):5430–5437
pubmed: 30804212 pmcid: 6462525 doi: 10.1074/jbc.AC119.007558

Auteurs

Handi Cao (H)

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Ryohichi Sugimura (R)

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. Rios@hku.hk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH