RADA-dependent branch migration has a predominant role in plant mitochondria and its defect leads to mtDNA instability and cell cycle arrest.


Journal

PLoS genetics
ISSN: 1553-7404
Titre abrégé: PLoS Genet
Pays: United States
ID NLM: 101239074

Informations de publication

Date de publication:
05 2022
Historique:
received: 08 02 2022
accepted: 14 04 2022
revised: 24 05 2022
pubmed: 14 5 2022
medline: 27 5 2022
entrez: 13 5 2022
Statut: epublish

Résumé

Mitochondria of flowering plants have large genomes whose structure and segregation are modulated by recombination activities. The post-synaptic late steps of mitochondrial DNA (mtDNA) recombination are still poorly characterized. Here we show that RADA, a plant ortholog of bacterial RadA/Sms, is an organellar protein that drives the major branch-migration pathway of plant mitochondria. While RadA/Sms is dispensable in bacteria, RADA-deficient Arabidopsis plants are severely impacted in their development and fertility, correlating with increased mtDNA recombination across intermediate-size repeats and accumulation of recombination-generated mitochondrial subgenomes. The radA mutation is epistatic to recG1 that affects the additional branch migration activity. In contrast, the double mutation radA recA3 is lethal, underlining the importance of an alternative RECA3-dependent pathway. The physical interaction of RADA with RECA2 but not with RECA3 further indicated that RADA is required for the processing of recombination intermediates in the RECA2-depedent recombination pathway of plant mitochondria. Although RADA is dually targeted to mitochondria and chloroplasts we found little to no effects of the radA mutation on the stability of the plastidial genome. Finally, we found that the deficient maintenance of the mtDNA in radA apparently triggers a retrograde signal that activates nuclear genes repressing cell cycle progression.

Identifiants

pubmed: 35550632
doi: 10.1371/journal.pgen.1010202
pii: PGENETICS-D-22-00131
pmc: PMC9129000
doi:

Substances chimiques

DNA, Mitochondrial 0
DNA-Binding Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1010202

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Plant Cell. 2006 Dec;18(12):3548-63
pubmed: 17189341
Mol Microbiol. 2015 Mar;95(5):769-79
pubmed: 25484163
Plant Cell. 2015 Oct;27(10):2907-25
pubmed: 26462909
Genome Res. 2015 May;25(5):645-54
pubmed: 25800675
Plant Cell. 2018 Mar;30(3):525-527
pubmed: 29519893
Elife. 2016 Feb 04;5:
pubmed: 26845522
DNA Repair (Amst). 2006 Jan 5;5(1):80-8
pubmed: 16140596
Dev Cell. 2012 May 15;22(5):1030-40
pubmed: 22595674
Nat Rev Mol Cell Biol. 2007 Feb;8(2):127-38
pubmed: 17228330
Cell. 1989 Jul 14;58(1):69-76
pubmed: 2752423
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Nucleic Acids Res. 2019 Sep 26;47(17):9198-9215
pubmed: 31350886
Biochim Biophys Acta. 2011 Jan;1813(1):186-200
pubmed: 20950654
Mol Plant. 2016 Feb 1;9(2):245-260
pubmed: 26584715
Plant J. 2020 Jan;101(2):420-441
pubmed: 31520498
Plant Physiol. 2014 Sep;166(1):152-67
pubmed: 25037213
Nat Genet. 2008 Mar;40(3):356-61
pubmed: 18246068
Annu Rev Plant Biol. 2017 Apr 28;68:225-252
pubmed: 28226235
Plant Cell. 2019 Aug;31(8):1734-1750
pubmed: 31189739
Plant Physiol. 2018 Oct;178(2):672-683
pubmed: 30135097
Plant Physiol. 2009 Oct;151(2):603-19
pubmed: 19675153
PLoS Genet. 2015 Mar 13;11(3):e1005080
pubmed: 25769081
PLoS One. 2015 Mar 20;10(3):e0120533
pubmed: 25793367
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5099-103
pubmed: 11309509
New Phytol. 2021 Dec;232(5):2026-2042
pubmed: 34482561
Nucleic Acids Res. 2016 Sep 6;44(15):7251-66
pubmed: 27193996
Mol Cell Biol. 2013 Jan;33(2):387-95
pubmed: 23149936
J Mol Biol. 2006 Feb 17;356(2):288-99
pubmed: 16376379
J Bacteriol. 2002 Dec;184(24):6836-44
pubmed: 12446634
Cell. 2009 Mar 20;136(6):1044-55
pubmed: 19303848
Plant J. 2019 Feb;97(3):430-446
pubmed: 30317699
Plant Biotechnol J. 2019 Mar;17(3):638-649
pubmed: 30144344
Mol Cell Biol. 2000 Jul;20(13):4513-21
pubmed: 10848578
PLoS Genet. 2011 Jul;7(7):e1002148
pubmed: 21779174
Elife. 2019 Apr 09;8:
pubmed: 30944065
Nat Commun. 2017 May 31;8:15638
pubmed: 28561029
Annu Rev Genet. 1997;31:213-44
pubmed: 9442895
Plant J. 2005 Dec;44(5):893-901
pubmed: 16297078
BMC Evol Biol. 2007 Aug 09;7:135
pubmed: 17688696
Genetica. 2003 Jan;117(1):3-16
pubmed: 12656568
EMBO J. 2016 Oct 4;35(19):2068-2086
pubmed: 27497297
Plant Physiol. 2018 Dec;178(4):1643-1656
pubmed: 30305373
EMBO J. 1994 Nov 1;13(21):5220-8
pubmed: 7957087
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Genome Biol Evol. 2013;5(6):1079-86
pubmed: 23645599
Nucleic Acids Res. 2016 Jul 8;44(W1):W232-5
pubmed: 27084950
Plant J. 2009 Mar;57(6):1128-39
pubmed: 19036033
J Biol Chem. 2007 Aug 31;282(35):25588-96
pubmed: 17599908
Plant Mol Biol. 2009 Jul;70(5):511-21
pubmed: 19387845
Genes Genet Syst. 2016;90(4):209-16
pubmed: 26617076
Genetics. 2009 Dec;183(4):1261-8
pubmed: 19822729
Plant Physiol. 2012 May;159(1):211-26
pubmed: 22415515
Plant Cell. 2004;16 Suppl:S154-69
pubmed: 15131248
Cell Rep. 2020 Aug 11;32(6):108019
pubmed: 32783941
Plant Cell. 2007 Apr;19(4):1251-64
pubmed: 17468263
Cell. 2003 Dec 12;115(6):679-89
pubmed: 14675533
Plant Cell. 2012 Jul;24(7):3060-73
pubmed: 22797472
Nature. 2012 Feb 08;482(7385):423-7
pubmed: 22318518
Plant Cell. 2020 Oct;32(10):3240-3255
pubmed: 32796124
EMBO Rep. 2013 Sep;14(9):817-22
pubmed: 23907539
Elife. 2012 Dec 13;1:e00067
pubmed: 23240082
Genes Dev. 2001 Sep 1;15(17):2177-96
pubmed: 11544175
J Biol Chem. 2017 Jun 9;292(23):9801-9814
pubmed: 28432121
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
New Phytol. 2010 Apr;186(2):299-317
pubmed: 20180912
Plant Cell. 2014 Jan;26(1):296-309
pubmed: 24399300
J Mol Biol. 1996 Feb 2;255(4):564-88
pubmed: 8568898
Plant Physiol. 2018 Apr;176(4):2834-2850
pubmed: 29472278
Nat Protoc. 2006;1(1):418-28
pubmed: 17406264

Auteurs

Nicolas Chevigny (N)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

Frédérique Weber-Lotfi (F)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

Anaïs Le Blevenec (A)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

Cédric Nadiras (C)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

Arnaud Fertet (A)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

Marc Bichara (M)

Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch-Graffenstaden, France.

Mathieu Erhardt (M)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

André Dietrich (A)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

Cécile Raynaud (C)

Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France.
Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France.

José M Gualberto (JM)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

Articles similaires

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia.

Lisa Demoen, Filip Matthijssens, Lindy Reunes et al.
1.00
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Animals Mice Humans Cell Line, Tumor
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

Classifications MeSH