Circulating miR-200 family as predictive markers during systemic therapy of metastatic breast cancer.


Journal

Archives of gynecology and obstetrics
ISSN: 1432-0711
Titre abrégé: Arch Gynecol Obstet
Pays: Germany
ID NLM: 8710213

Informations de publication

Date de publication:
09 2022
Historique:
received: 28 07 2021
accepted: 10 02 2022
pubmed: 4 3 2022
medline: 30 8 2022
entrez: 3 3 2022
Statut: ppublish

Résumé

Circulating miRNAs can provide valid prognostic and predictive information for breast cancer diagnosis and subsequent management. They may comprise quintessential biomarkers that can be obtained minimally invasively from liquid biopsy in metastatic breast cancer patients. Therefore, they would be clinically crucial for monitoring therapy response, with the goal of detecting early relapse. This study investigated miRNA expression in patients with early and/or late relapse, and the predictive value for assessing overall (OS) and progression-free survival (PFS). Forty-seven patients with metastatic breast cancer from the University Women's Hospital Heidelberg were enrolled in this study. Expression of miR-200a, miR-200b, miR-200c, miR-141, and miR-429 was analyzed by RT-qPCR before a new line of systemic therapy and after the first cycle of a respective therapy. Tumor response was assessed every 3 months using the RECIST criteria. Statistical analysis focused on the relation of miR-200s expression and early vs. late cancer relapse in relation to systemic treatment. The association of miRNAs with PFS and OS was investigated. Before starting a new line of systemic therapy, miR-429 (p = 0.024) expression was significantly higher in patients with early relapse (PFS ≤ 4 months) than in patients with late relapse (PFS > 4 months). After one cycle of systemic therapy, miR-200a (p = 0.039), miR-200b (p = 0.003), miR-141 (p = 0.017), and miR-429 (p = 0.010) expression was higher in early than in late progressive cancer. In addition, 4 out of 5 miR-200 family members (miR-200a, miR-200b, miR-141, and miR-429) predicted PFS (p = 0.048, p = 0.008, p = 0.026, and p = 0.016, respectively). Patients with heightened miRNA levels showed a significant reduction in OS and PFS. Circulating miR-200s were differentially expressed among patients with late and/or early relapse. 4 of 5 members of the miR-200 family predicted significantly early relapse after systemic treatment. Our results encourage the use of circulating miR-200s as valuable prognostic biomarkers during metastatic breast cancer therapy.

Identifiants

pubmed: 35237856
doi: 10.1007/s00404-022-06442-2
pii: 10.1007/s00404-022-06442-2
pmc: PMC9411224
doi:

Substances chimiques

Biomarkers, Tumor 0
MIRN200 microRNA, human 0
MicroRNAs 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

875-885

Informations de copyright

© 2022. The Author(s).

Références

Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492
doi: 10.3322/caac.21492 pubmed: 30207593
Krebs in Deutschland für 2013/2014. 11. Ausgabe. Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (Hrsg). Berlin, 2017. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2017/krebs_in_deutschland_2017.pdf?
de Rubis G, Rajeev Krishnan S, Bebawy M (2019) Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci 40:172–186. https://doi.org/10.1016/j.tips.2019.01.006
doi: 10.1016/j.tips.2019.01.006 pubmed: 30736982
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297
doi: 10.1016/S0092-8674(04)00045-5
Senfter D, Madlener S, Krupitza G et al (2016) The microRNA-200 family: still much to discover. Biomol Concepts 7:311–319. https://doi.org/10.1515/bmc-2016-0020
doi: 10.1515/bmc-2016-0020 pubmed: 27837593
Dykxhoorn DM, Wu Y, Xie H et al (2009) miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE 4:e7181. https://doi.org/10.1371/journal.pone.0007181
doi: 10.1371/journal.pone.0007181 pubmed: 19787069 pmcid: 2749331
Korpal M, Ell BJ, Buffa FM et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17:1101–1108. https://doi.org/10.1038/nm.2401
doi: 10.1038/nm.2401 pubmed: 21822286 pmcid: 3169707
Markou A, Zavridou M, Sourvinou I et al (2016) Direct comparison of metastasis-related miRNAs expression levels in circulating tumor cells, corresponding plasma, and primary tumors of breast cancer patients. Clin Chem 62:1002–1011
doi: 10.1373/clinchem.2015.253716
Madhavan D, Zucknick M, Wallwiener M et al (2012) Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res 18:5972–5982. https://doi.org/10.1158/1078-0432.CCR-12-1407
doi: 10.1158/1078-0432.CCR-12-1407 pubmed: 22952344
Debeb BG, Lacerda L, Anfossi S et al (2016) miR-141-mediated regulation of brain metastasis from breast cancer. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw026
doi: 10.1093/jnci/djw026 pubmed: 27075851 pmcid: 5017951
Papadaki C, Stoupis G, Tsalikis L et al (2019) Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget 10:966–981. https://doi.org/10.18632/oncotarget.26629
doi: 10.18632/oncotarget.26629 pubmed: 30847025 pmcid: 6398176
Papadaki C, Stratigos M, Markakis G et al (2018) Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res 20:72. https://doi.org/10.1186/s13058-018-1001-3
doi: 10.1186/s13058-018-1001-3 pubmed: 29996899 pmcid: 6042266
Shao B, Wang X, Zhang L et al (2019) Plasma microRNAs predict chemoresistance in patients with metastatic breast cancer. Technol Cancer Res Treat 18:1533033819828709. https://doi.org/10.1177/1533033819828709
doi: 10.1177/1533033819828709 pubmed: 30786836 pmcid: 6383099
Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026
doi: 10.1016/j.ejca.2008.10.026 pubmed: 19097774
Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233. https://doi.org/10.1093/nar/gkr254
doi: 10.1093/nar/gkr254 pubmed: 21609964 pmcid: 3167594
R Foundation for Statistical Computing R (2022) A language and environment for statistical computing. http://www.r-project.org/index.html
Humphries B, Yang C (2015) The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 6:6472–6498. https://doi.org/10.18632/oncotarget.3052
doi: 10.18632/oncotarget.3052 pubmed: 25762624 pmcid: 4466628
Zhang G, Zhang W, Li B et al (2017) MicroRNA-200c and microRNA-141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer. Breast Cancer Res 19:73. https://doi.org/10.1186/s13058-017-0858-x
doi: 10.1186/s13058-017-0858-x pubmed: 28637482 pmcid: 5480201
Yu S-J, Hu J-Y, Kuang X-Y et al (2013) MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clin Cancer Res 19:1389–1399. https://doi.org/10.1158/1078-0432.CCR-12-1959
doi: 10.1158/1078-0432.CCR-12-1959 pubmed: 23340296
Fontana A, Barbano R, Dama E et al (2021) Combined analysis of miR-200 family and its significance for breast cancer. Sci Rep 11:2980. https://doi.org/10.1038/s41598-021-82286-1
doi: 10.1038/s41598-021-82286-1 pubmed: 33536459 pmcid: 7859396
Madhavan D, Peng C, Wallwiener M et al (2016) Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis 37:461–470. https://doi.org/10.1093/carcin/bgw008
doi: 10.1093/carcin/bgw008 pubmed: 26785733
Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601. https://doi.org/10.1038/ncb1722
doi: 10.1038/ncb1722 pubmed: 18376396
Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129. https://doi.org/10.1053/j.gastro.2006.02.057
doi: 10.1053/j.gastro.2006.02.057 pubmed: 16762633
Amrhein V, Korner-Nievergelt F, Roth T (2017) The earth is flat (p 0.05): significance thresholds and the crisis of unreplicable research. PeerJ 5:e3544. https://doi.org/10.7717/peerj.3544
doi: 10.7717/peerj.3544 pubmed: 28698825 pmcid: 5502092
Noman MZ, Janji B, Abdou A et al (2017) The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology 6:e1263412. https://doi.org/10.1080/2162402X.2016.1263412
doi: 10.1080/2162402X.2016.1263412 pubmed: 28197390 pmcid: 5283623
Smolle MA, Prinz F, Calin GA et al (2019) Current concepts of non-coding RNA regulation of immune checkpoints in cancer. Mol Aspects Med 70:117–126. https://doi.org/10.1016/j.mam.2019.09.007
doi: 10.1016/j.mam.2019.09.007 pubmed: 31582259
Smolle MA, Calin HN, Pichler M et al (2017) Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J 284:1952–1966. https://doi.org/10.1111/febs.14030
doi: 10.1111/febs.14030 pubmed: 28132417
Shukuya T, Ghai V, Amann JM et al (2020) Circulating MicroRNAs and extracellular vesicle-containing MicroRNAs as response biomarkers of anti-programmed cell death protein 1 or programmed death-ligand 1 therapy in NSCLC. J Thorac Oncol 15:1773–1781. https://doi.org/10.1016/j.jtho.2020.05.022
doi: 10.1016/j.jtho.2020.05.022 pubmed: 32565389 pmcid: 7641981
Schwarzenbach H, da Silva AM, Calin G et al (2015) Data normalization strategies for MicroRNA quantification. Clin Chem 61:1333–1342. https://doi.org/10.1373/clinchem.2015.239459
doi: 10.1373/clinchem.2015.239459 pubmed: 26408530 pmcid: 4890630

Auteurs

Chiara Fischer (C)

Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.

Thomas M Deutsch (TM)

Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany. thomas.deutsch@med.uni-heidelberg.de.

Manuel Feisst (M)

Institute of Medical Biometry, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.

Nathalie Rippinger (N)

Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.

Fabian Riedel (F)

Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.

Andreas D Hartkopf (AD)

Department of Obstetrics and Gynecology, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.

Sara Y Brucker (SY)

Department of Obstetrics and Gynecology, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.

Christoph Domschke (C)

Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.

Carlo Fremd (C)

National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.

Laura Michel (L)

National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.

Barbara Burwinkel (B)

Molecular Epidemiology C080, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.

Andreas Schneeweiss (A)

National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
Molecular Epidemiology C080, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.

Andrey Turchinovich (A)

Molecular Epidemiology C080, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.

Markus Wallwiener (M)

Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH