Circulating miR-200 family as predictive markers during systemic therapy of metastatic breast cancer.
Circulating microRNAs
Liquid biopsy
Metastatic breast cancer
Survival
miR-200 family
Journal
Archives of gynecology and obstetrics
ISSN: 1432-0711
Titre abrégé: Arch Gynecol Obstet
Pays: Germany
ID NLM: 8710213
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
28
07
2021
accepted:
10
02
2022
pubmed:
4
3
2022
medline:
30
8
2022
entrez:
3
3
2022
Statut:
ppublish
Résumé
Circulating miRNAs can provide valid prognostic and predictive information for breast cancer diagnosis and subsequent management. They may comprise quintessential biomarkers that can be obtained minimally invasively from liquid biopsy in metastatic breast cancer patients. Therefore, they would be clinically crucial for monitoring therapy response, with the goal of detecting early relapse. This study investigated miRNA expression in patients with early and/or late relapse, and the predictive value for assessing overall (OS) and progression-free survival (PFS). Forty-seven patients with metastatic breast cancer from the University Women's Hospital Heidelberg were enrolled in this study. Expression of miR-200a, miR-200b, miR-200c, miR-141, and miR-429 was analyzed by RT-qPCR before a new line of systemic therapy and after the first cycle of a respective therapy. Tumor response was assessed every 3 months using the RECIST criteria. Statistical analysis focused on the relation of miR-200s expression and early vs. late cancer relapse in relation to systemic treatment. The association of miRNAs with PFS and OS was investigated. Before starting a new line of systemic therapy, miR-429 (p = 0.024) expression was significantly higher in patients with early relapse (PFS ≤ 4 months) than in patients with late relapse (PFS > 4 months). After one cycle of systemic therapy, miR-200a (p = 0.039), miR-200b (p = 0.003), miR-141 (p = 0.017), and miR-429 (p = 0.010) expression was higher in early than in late progressive cancer. In addition, 4 out of 5 miR-200 family members (miR-200a, miR-200b, miR-141, and miR-429) predicted PFS (p = 0.048, p = 0.008, p = 0.026, and p = 0.016, respectively). Patients with heightened miRNA levels showed a significant reduction in OS and PFS. Circulating miR-200s were differentially expressed among patients with late and/or early relapse. 4 of 5 members of the miR-200 family predicted significantly early relapse after systemic treatment. Our results encourage the use of circulating miR-200s as valuable prognostic biomarkers during metastatic breast cancer therapy.
Identifiants
pubmed: 35237856
doi: 10.1007/s00404-022-06442-2
pii: 10.1007/s00404-022-06442-2
pmc: PMC9411224
doi:
Substances chimiques
Biomarkers, Tumor
0
MIRN200 microRNA, human
0
MicroRNAs
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
875-885Informations de copyright
© 2022. The Author(s).
Références
Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492
doi: 10.3322/caac.21492
pubmed: 30207593
Krebs in Deutschland für 2013/2014. 11. Ausgabe. Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (Hrsg). Berlin, 2017. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2017/krebs_in_deutschland_2017.pdf?
de Rubis G, Rajeev Krishnan S, Bebawy M (2019) Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci 40:172–186. https://doi.org/10.1016/j.tips.2019.01.006
doi: 10.1016/j.tips.2019.01.006
pubmed: 30736982
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297
doi: 10.1016/S0092-8674(04)00045-5
Senfter D, Madlener S, Krupitza G et al (2016) The microRNA-200 family: still much to discover. Biomol Concepts 7:311–319. https://doi.org/10.1515/bmc-2016-0020
doi: 10.1515/bmc-2016-0020
pubmed: 27837593
Dykxhoorn DM, Wu Y, Xie H et al (2009) miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE 4:e7181. https://doi.org/10.1371/journal.pone.0007181
doi: 10.1371/journal.pone.0007181
pubmed: 19787069
pmcid: 2749331
Korpal M, Ell BJ, Buffa FM et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17:1101–1108. https://doi.org/10.1038/nm.2401
doi: 10.1038/nm.2401
pubmed: 21822286
pmcid: 3169707
Markou A, Zavridou M, Sourvinou I et al (2016) Direct comparison of metastasis-related miRNAs expression levels in circulating tumor cells, corresponding plasma, and primary tumors of breast cancer patients. Clin Chem 62:1002–1011
doi: 10.1373/clinchem.2015.253716
Madhavan D, Zucknick M, Wallwiener M et al (2012) Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res 18:5972–5982. https://doi.org/10.1158/1078-0432.CCR-12-1407
doi: 10.1158/1078-0432.CCR-12-1407
pubmed: 22952344
Debeb BG, Lacerda L, Anfossi S et al (2016) miR-141-mediated regulation of brain metastasis from breast cancer. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw026
doi: 10.1093/jnci/djw026
pubmed: 27075851
pmcid: 5017951
Papadaki C, Stoupis G, Tsalikis L et al (2019) Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget 10:966–981. https://doi.org/10.18632/oncotarget.26629
doi: 10.18632/oncotarget.26629
pubmed: 30847025
pmcid: 6398176
Papadaki C, Stratigos M, Markakis G et al (2018) Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res 20:72. https://doi.org/10.1186/s13058-018-1001-3
doi: 10.1186/s13058-018-1001-3
pubmed: 29996899
pmcid: 6042266
Shao B, Wang X, Zhang L et al (2019) Plasma microRNAs predict chemoresistance in patients with metastatic breast cancer. Technol Cancer Res Treat 18:1533033819828709. https://doi.org/10.1177/1533033819828709
doi: 10.1177/1533033819828709
pubmed: 30786836
pmcid: 6383099
Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026
doi: 10.1016/j.ejca.2008.10.026
pubmed: 19097774
Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233. https://doi.org/10.1093/nar/gkr254
doi: 10.1093/nar/gkr254
pubmed: 21609964
pmcid: 3167594
R Foundation for Statistical Computing R (2022) A language and environment for statistical computing. http://www.r-project.org/index.html
Humphries B, Yang C (2015) The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 6:6472–6498. https://doi.org/10.18632/oncotarget.3052
doi: 10.18632/oncotarget.3052
pubmed: 25762624
pmcid: 4466628
Zhang G, Zhang W, Li B et al (2017) MicroRNA-200c and microRNA-141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer. Breast Cancer Res 19:73. https://doi.org/10.1186/s13058-017-0858-x
doi: 10.1186/s13058-017-0858-x
pubmed: 28637482
pmcid: 5480201
Yu S-J, Hu J-Y, Kuang X-Y et al (2013) MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clin Cancer Res 19:1389–1399. https://doi.org/10.1158/1078-0432.CCR-12-1959
doi: 10.1158/1078-0432.CCR-12-1959
pubmed: 23340296
Fontana A, Barbano R, Dama E et al (2021) Combined analysis of miR-200 family and its significance for breast cancer. Sci Rep 11:2980. https://doi.org/10.1038/s41598-021-82286-1
doi: 10.1038/s41598-021-82286-1
pubmed: 33536459
pmcid: 7859396
Madhavan D, Peng C, Wallwiener M et al (2016) Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis 37:461–470. https://doi.org/10.1093/carcin/bgw008
doi: 10.1093/carcin/bgw008
pubmed: 26785733
Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601. https://doi.org/10.1038/ncb1722
doi: 10.1038/ncb1722
pubmed: 18376396
Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129. https://doi.org/10.1053/j.gastro.2006.02.057
doi: 10.1053/j.gastro.2006.02.057
pubmed: 16762633
Amrhein V, Korner-Nievergelt F, Roth T (2017) The earth is flat (p 0.05): significance thresholds and the crisis of unreplicable research. PeerJ 5:e3544. https://doi.org/10.7717/peerj.3544
doi: 10.7717/peerj.3544
pubmed: 28698825
pmcid: 5502092
Noman MZ, Janji B, Abdou A et al (2017) The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology 6:e1263412. https://doi.org/10.1080/2162402X.2016.1263412
doi: 10.1080/2162402X.2016.1263412
pubmed: 28197390
pmcid: 5283623
Smolle MA, Prinz F, Calin GA et al (2019) Current concepts of non-coding RNA regulation of immune checkpoints in cancer. Mol Aspects Med 70:117–126. https://doi.org/10.1016/j.mam.2019.09.007
doi: 10.1016/j.mam.2019.09.007
pubmed: 31582259
Smolle MA, Calin HN, Pichler M et al (2017) Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J 284:1952–1966. https://doi.org/10.1111/febs.14030
doi: 10.1111/febs.14030
pubmed: 28132417
Shukuya T, Ghai V, Amann JM et al (2020) Circulating MicroRNAs and extracellular vesicle-containing MicroRNAs as response biomarkers of anti-programmed cell death protein 1 or programmed death-ligand 1 therapy in NSCLC. J Thorac Oncol 15:1773–1781. https://doi.org/10.1016/j.jtho.2020.05.022
doi: 10.1016/j.jtho.2020.05.022
pubmed: 32565389
pmcid: 7641981
Schwarzenbach H, da Silva AM, Calin G et al (2015) Data normalization strategies for MicroRNA quantification. Clin Chem 61:1333–1342. https://doi.org/10.1373/clinchem.2015.239459
doi: 10.1373/clinchem.2015.239459
pubmed: 26408530
pmcid: 4890630