Interleukin-6 mimics insulin-dependent cellular distribution of some cytoskeletal proteins and Glut4 transporter without effect on glucose uptake in 3T3-L1 adipocytes.


Journal

Histochemistry and cell biology
ISSN: 1432-119X
Titre abrégé: Histochem Cell Biol
Pays: Germany
ID NLM: 9506663

Informations de publication

Date de publication:
May 2022
Historique:
accepted: 01 02 2022
pubmed: 2 3 2022
medline: 20 5 2022
entrez: 1 3 2022
Statut: ppublish

Résumé

Interleukin (IL)-6, a known proinflammatory cytokine, is released in both visceral adipose tissue and contracting skeletal muscle. In this study, we used microRNA profiling as a screening method to identify miRNA species modified by IL-6 treatment in mouse 3T3-L1 adipocytes. miRNA microarray analysis and qRT-PCR revealed increased expression of miR-146b-3p in adipocytes exposed to IL-6 (1 ng/ml) during 8-day differentiation. On the basis of ontological analysis of potential targets, selected proteins associated with cytoskeleton and transport were examined in the context of adipocyte response to insulin, using immunofluorescence and confocal microscopy. We concluded that IL-6: (i) does not affect insulin action on actin cellular distribution; (ii) modulates the effect of insulin on myosin light chain kinase (Mylk) distribution by preventing its shift toward cytoplasm; (iii) mimics the effect of insulin on dynein distribution by increasing its near-nuclear accumulation; (iv) mimics the effect of insulin on glucose transporter Glut4 distribution, especially by increasing its near-nuclear accumulation; (v) supports insulin action on early endosome marker Rab4A near-nuclear accumulation. Moreover, as IL-6 did not disturb insulin-dependent glucose uptake, our results do not confirm the IL-6-induced impairment of insulin action observed in some in vitro studies, suggesting that the effect of IL-6 is dose dependent.

Identifiants

pubmed: 35230485
doi: 10.1007/s00418-022-02091-3
pii: 10.1007/s00418-022-02091-3
doi:

Substances chimiques

Cytoskeletal Proteins 0
Glucose Transporter Type 4 0
Insulin 0
Interleukin-6 0
MicroRNAs 0
Glucose IY9XDZ35W2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

525-546

Subventions

Organisme : Narodowe Centrum Nauki
ID : 2013/09/B/NZ/00115

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Ahn J, Lee H, Jung CH, Jeon TI, Ha TY (2013) MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med 5:1602–1612. https://doi.org/10.1002/emmm.201302647
doi: 10.1002/emmm.201302647 pubmed: 24009212 pmcid: 3799582
Andreozzi F, Laratta E, Procopio C, Hribal ML, Sciacqua A, Petricone M, Miele C, Petricone F, Sesti G (2007) Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol 27:2372–2383. https://doi.org/10.1128/MCB.01340-06
doi: 10.1128/MCB.01340-06 pubmed: 17242212 pmcid: 1820492
Bakker AD, Kulkarni RN, Klein-Nulend J, Lems WF (2014) IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts. J Dent Res 93:394–399. https://doi.org/10.1177/0022034514522485
doi: 10.1177/0022034514522485 pubmed: 24492932
Balakrishan A, Gurupradad KP, Satyamoorthy K, Joshi MB (2018) Interleukin-6 determines protein stabilization of DNA methyltransferases and alters DNA promoter methylation of genes associated with insulin signaling and angiogenesis. Lab Invest 98:1143–1158
doi: 10.1038/s41374-018-0079-7
Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/s0092-8674(04)00045-5
doi: 10.1016/s0092-8674(04)00045-5 pubmed: 14744438
Benjamini, Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300
Błaszczyk M, Gajewska M, Milewska M, Grzelkowska-Kowalczyk K (2017) Insulin-dependent cytoplasmic distribution of Rab4a in mouse adipocytes is inhibited by interleukin-6, -8, and -15. Cell Biol Int 41:457–463. https://doi.org/10.1002/cbin.10743
doi: 10.1002/cbin.10743 pubmed: 28191740
Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183–190. https://doi.org/10.1038/nm1166
doi: 10.1038/nm1166 pubmed: 15685173 pmcid: 1440292
Carey AL, Bruce CR, Sacchetti M, Anderson MJ, Olsen DB, Saltin B, Hawley JA, Febbraio MA (2004) Interleukin-6 and tumor necrosis factor-alpha are not increased in patients with type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia 47:1029–1037. https://doi.org/10.1007/s00125-004-1403-x
doi: 10.1007/s00125-004-1403-x pubmed: 15168015
Caron A, Ahmed F, Peshdary V, Garneau L, Atlas E, Aguer C (2020) Effects of PCB126 on adipose-to-muscle communication in an in vitro model. Environ Health Perspect. https://doi.org/10.1289/EHP7058
doi: 10.1289/EHP7058 pubmed: 33026256 pmcid: 7539676
Chan CC, Damen M, Alorcon PC, Sanchez-Gurmaches J, Divanovic S (2019) Inflammation and immunity: from an adipocyte’s perspective. J Interferon Cytokine Res 39:459–471. https://doi.org/10.1089/jir.2019.0014
doi: 10.1089/jir.2019.0014 pubmed: 30920343 pmcid: 6660836
Chen Y, Lippincott-Schwartz J (2013) Insulin triggers surface-directed trafficking of sequestered GLUT4 storage vesicles marked by Rab10. Small GTPases 4:193–197. https://doi.org/10.4161/sgtp.26471
doi: 10.4161/sgtp.26471 pubmed: 24030635 pmcid: 3976978
Dietze D, Ramrath S, Ritzeler O, Tennagels N, Hauner H, Eckel J (2004) Inhibitor κB kinase is involved in the paracrine crosstalk between human fat and muscle cells. Int J Obes Relat Metab Disord 28:985–992. https://doi.org/10.1038/sj.ijo.0802701
doi: 10.1038/sj.ijo.0802701 pubmed: 15211372
Deiuliis JA (2016) MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) 40:88–101. https://doi.org/10.1038/ijo.2015.170
doi: 10.1038/ijo.2015.170
Engin AB (2017) MicroRNA and adipogenesis. Adv Exp Med Biol 960:489–509. https://doi.org/10.1007/978-3-319-48382-5_21
doi: 10.1007/978-3-319-48382-5_21 pubmed: 28585213
Fletcher LM, Welsh GI, Oatey PB, Tavaré J (2000) Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake. Biochem J 352:267–276
doi: 10.1042/bj3520267
Foley K, Boguslavsky S, Klip A (2011) Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 50:3048–3061. https://doi.org/10.1021/bi2000356
doi: 10.1021/bi2000356 pubmed: 21405107
Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58:92–102. https://doi.org/10.1002/neu.10282
doi: 10.1002/neu.10282 pubmed: 14598373
Giralt M, Cereijo R, Villarroya F (2016) Adipokines and the endocrine role of adipose tissues. Handb Exp Pharmacol 233:265–282. https://doi.org/10.1007/164_2015_6
doi: 10.1007/164_2015_6 pubmed: 25903415
Grabiec K, Milewska M, Błaszczyk M, Gajewska M, Grzelkowska-Kowalczyk K (2015) Palmitate exerts opposite effects on proliferation and differentiation of skeletal myoblasts. Cell Biol Int 39:1044–1052. https://doi.org/10.1002/cbin.10477
doi: 10.1002/cbin.10477 pubmed: 25857830
Gray SR, Kamolrat T (2011) The effect of exercise induced cytokines on insulin stimulated glucose transport in C2C12 cells. Cytokine 55:221–228. https://doi.org/10.1016/cyto.2011.04.019
doi: 10.1016/cyto.2011.04.019 pubmed: 21600784
Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821–11827. https://doi.org/10.1073/pnas.0601617103
doi: 10.1073/pnas.0601617103 pubmed: 16882731 pmcid: 1567661
Guo J, Mo D, Zhang Y, Zhang Y, Cong P, Xiao S, He Z, Liu X, Chen Y (2016) MicroRNAome comparison between intramuscular and subcutaneous vascular stem cell adipogenesis. PLoS One 7:e45410. https://doi.org/10.1371/journal.pone.0045410
doi: 10.1371/journal.pone.0045410
Haeusler RA, McGraw TE, Accili D (2017) Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 19:31–44. https://doi.org/10.1038/nrm.2017.89
doi: 10.1038/nrm.2017.89 pubmed: 28974775 pmcid: 5894887
Heissler SM, Manstein DJ (2013) Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 70:1–21
doi: 10.1007/s00018-012-1002-9
Henry SL, Bensley JG, Wood-Bradley RJ, Cullen-McEwen LA, Bertram JF, Armitage JA (2012) White adipocytes: more than just fat depots. Int J Biochem Cell Biol 44:435–440. https://doi.org/10.1016/j.biocel.2011.12.011
doi: 10.1016/j.biocel.2011.12.011 pubmed: 22222895
Hogan JC, Stephens JM (2005) Effects of leukemia inhibitory factor on 3T3-L1 adipocytes. J Endocrinol 185:485–496. https://doi.org/10.1677/joe.1.05980
doi: 10.1677/joe.1.05980 pubmed: 15930175
Huang J, Imamura T, Olefsky JM (2001) Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc Natl Acad Sci USA 98:13084–13089. https://doi.org/10.1073/pnas.241368698
doi: 10.1073/pnas.241368698 pubmed: 11687655 pmcid: 60828
Imamura T, Huang J, Usui I, Satoh H, Bever J, Olefsky JM (2003) Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin. Mol Cell Biol 23:4892–4900. https://doi.org/10.1128/MCB.23.14.4892-4900.2003
doi: 10.1128/MCB.23.14.4892-4900.2003 pubmed: 12832475 pmcid: 162221
Ishino S, Sugita T, Kondo Y, Okai M, Tsuchimori K, Watanabe M, Mori I, Hosoya M, Horiguchi T, Kamiguchi H (2017) Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models: evaluation of insulin and β3-adrenergic receptor agonist effects by
doi: 10.1007/s12149-017-1169-0 pubmed: 28401400
Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13:1899–1910
doi: 10.1002/j.1460-2075.1994.tb06459.x
Ji C, Chen X, Gao C, Jiao L, Wang J, Xu G, Fu H, Guo X, Zhao Y (2011) IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes. J Bioenerg Biomembr 43:367–375. https://doi.org/10.1007/s10863-011-93611-8
doi: 10.1007/s10863-011-93611-8 pubmed: 21732177
Jin X, Zimmers TA, Zhang Z, Pierce RH, Koniaris LG (2010) Interleukin-6 is an important in vivo inhibitor of intestinal epithelial cell death in mice. Gut 59:186–196. https://doi.org/10.1136/gut.2008.151175
doi: 10.1136/gut.2008.151175 pubmed: 19074180
Jovanović GK, Mrakovcic-Sutic I, Pavičić Žeželj S, Šuŝa B, Rahelić D, Majanović SK (2020) The efficacy of an energy-restricted anti-inflammatory diet for the management of obesity in younger adults. Nutrients 12:3583. https://doi.org/10.3390/nu12113583
doi: 10.3390/nu12113583
Kaddai V, Gonzalez T, Keslair F, Grémeaux T, Bonnafous S, Gugenheim J, Tran A, Gual P, Le Marchand-Brustel Y, Cormont M (2009) Rab4b is a small GTPase involved in the control of the glucose transporter GLUT4 localization in adipocyte. PLoS One 4:e5257. https://doi.org/10.1371/journal.pone.0005257
doi: 10.1371/journal.pone.0005257 pubmed: 19590752 pmcid: 2707114
Kalantari R, Chiang C-M, Corey DR (2016) Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res 44:524–537. https://doi.org/10.1093/nar/gkv1305
doi: 10.1093/nar/gkv1305 pubmed: 26612865
Kanzaki M, Watson RT, Hou JC, Stamnes M, Saltiel AR, Pessin JE (2002) Small GTP-binding protein TC10 differentially regulates two distinct populations of filamentous actin in 3T3L1 adipocytes. Mol Biol Cell 13:2334–2346. https://doi.org/10.1091/mbc.01-10-0490
doi: 10.1091/mbc.01-10-0490 pubmed: 12134073 pmcid: 117317
Kim J-H, Bachmann RA, Chen J (2009) Interleukin-6 and insulin resistance. Vitam Horm 80:613–633. https://doi.org/10.1016/S0083-6729(08)00621-3
doi: 10.1016/S0083-6729(08)00621-3 pubmed: 19251052
Kim YD, Kim YH, Cho YM, Kim DK, Ahn SW, Lee JM, Chanda D, Shong M, Lee CH, Choi HS (2012) Metformin ameliorates IL-6-induced hepatic insulin resistance via induction of orphan nuclear receptor small heterodimer partner (SHP) in mouse models. Diabetologia 55:1482–1494. https://doi.org/10.1007/s00125-012-2494-4
doi: 10.1007/s00125-012-2494-4 pubmed: 22349108
Knudsen JG, Gudiksen A, Bertholdt L, Overby P, Villesen I, Schwartz CL, Pilegaard H (2017) Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise. PLoS One 12:e0189301. https://doi.org/10.1371/journal.pone.0189301
doi: 10.1371/journal.pone.0189301 pubmed: 29253016 pmcid: 5734691
Layman DK, Baum JI (2004) Dietary protein impact on glycemic control during weight loss. J Nutr 134:968S-973S. https://doi.org/10.1093/jn/134.4.968S
doi: 10.1093/jn/134.4.968S pubmed: 15051856
Lee S-H, Choi N-H, Koh I-U, Kim B-J, Lee S, Kim S-C, Choi SS (2020) Putative positive role of inflammatory genes in fat deposition supported by altered gene expression in purified human adipocytes and preadipocytes from lean and obese adipose tissues. J Transl Med 18:433. https://doi.org/10.1186/s12967-020-02611-6
doi: 10.1186/s12967-020-02611-6 pubmed: 33183332 pmcid: 7664034
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262 pubmed: 11846609
Majewska A, Domoradzki T, Grzelkowska-Kowalczyk K (2019) Transcriptomic profiling during myogenesis. In: Rønning SB (ed) Myogenesis. Methods and Protocols. Methods Mol Biol 1889, Springer New York, pp 127–168. https://doi.org/10.1007/978-1-8897-6_9 .
Marko DM, Foran G, Vlavcheski F, Baron DC, Hayward GC, Baranowski BJ, Necakov A, Tsiani E, MacPherson RE (2020) Interleukin-6 treatment results in GLUT4 translocation and AMPK phosphorylation in neuronal SH-SY5Y cells. Cells 9:1114. https://doi.org/10.3390/cells9051114
doi: 10.3390/cells9051114 pmcid: 7290332
Matthews VB, Allen TL, Risis S, Chan MH, Henstridge DC, Watson N, Zaffino LA, Babb JR, Boon J, Meikle PJ, Jowett JB, Watt MJ, Jansson J-O, Bruce CR, Febbraio MA (2010) Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53:2431–2441. https://doi.org/10.1007/s00125-010-1865-y
doi: 10.1007/s00125-010-1865-y pubmed: 20697689
McGregor RA, Choi MS (2011) MicroRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316. https://doi.org/10.2174/156652411795677990
doi: 10.2174/156652411795677990 pubmed: 21506921 pmcid: 3267163
Mehra A, Macdonald I, Pillay TS (2007) Variability in 3T3-L1 adipocyte differentiation depending on cell culture dish. Anal Biochem 362:281–283. https://doi.org/10.1016/j.ab.2006.12.016
doi: 10.1016/j.ab.2006.12.016 pubmed: 17241610
Milewska M, Domoradzki T, Majewska A, Błaszczyk M, Gajewska M, Hulanicka M, Grzelkowska-Kowalczyk K (2020) Interleukin-6 affects pacsin3, ephrinA4 expression and cytoskeletal proteins in differentiating primary skeletal myoblasts through transcriptional and post-transcriptional mechanisms. Cell Tissue Res 380:155–172. https://doi.org/10.1007/s00441-019-0313304
doi: 10.1007/s00441-019-0313304 pubmed: 31820147
Omata W, Shibata H, Li L, Takata K, Kojima I (2000) Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem J 346:321–328
doi: 10.1042/bj3460321
Parimisetty A, Dorsemans AC, Awada R, Ravanan P, Diotel N, d’Hellencourt CL (2016) Secret talk between adipose tissue and central nervous system via secreted factors—an emerging frontier in the neurodegenerative research. J Neuroinflammation 13:67. https://doi.org/10.1186/s12974-016-0530-x
doi: 10.1186/s12974-016-0530-x pubmed: 27012931 pmcid: 4806498
Pedersen BK, Febraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. https://doi.org/10.1152/physrev.90100.2007
doi: 10.1152/physrev.90100.2007 pubmed: 18923185
Pellegrinelli V, Heuvingh J, du Roure O, Rouaalt C, Devulder A, Klein C, Lacasa M, Clément E, Lacasa D, Clément K (2014) Human adipocyte function is impacted by mechanical cues. J Pathol 233:183–195. https://doi.org/10.1002/path.4347
doi: 10.1002/path.4347 pubmed: 24623048
Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852. https://doi.org/10.1261/rna.939908
doi: 10.1261/rna.939908 pubmed: 18375788 pmcid: 2327352
Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334. https://doi.org/10.1001/jama.286.3.327
doi: 10.1001/jama.286.3.327 pubmed: 11466099
Prostek A, Gajewska M, Kamola D, Bałasińska B (2014) The influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cellular maturation. Lipids Health Dis 13:3. https://doi.org/10.1186/1476-511X-13-3
doi: 10.1186/1476-511X-13-3 pubmed: 24387137 pmcid: 3903018
Pu CM, Liu CW, Liang CL, Yen YH, Chen SH, Jiang-Shieh YF, Chien CL, Chen YC, Chen YL (2017) Adipose-derived stem cell protect skin flaps against ischemia/reperfusion injury via IL-6 expression. J Invest Dermatol 137:1353–1362. https://doi.org/10.1016/j.jid/2016.12.030
doi: 10.1016/j.jid/2016.12.030 pubmed: 28163069
Raschke S, Eckel J (2013) Adipo-myokines: two sides of the same coin—mediators of inflammation and mediators of exercise. Mediators Inflamm 2013:16. https://doi.org/10.1155/2013/320724
doi: 10.1155/2013/320724
Renovato-Martins M, Moreira-Nunes C, Atella GC, Barja-Fidalgo C, de Moraes JA (2020) Obese adipose tissue secretion induces inflammation in preadipocytes: role of toll-like receptor-4. Nutrients 12:2828. https://doi.org/10.3390/nu12092828
doi: 10.3390/nu12092828 pmcid: 7551792
Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. https://doi.org/10.1016/j.cell.2013.12.012
doi: 10.1016/j.cell.2013.12.012 pubmed: 24439368 pmcid: 3934003
Rosendal L, Søgaard K, Kjær M, Sjøgaard G, Langberg H, Kristiansen J (2005) Increase in interstitial interleukin-6 of human skeletal muscle with repetitive low-force exercise. J Appl Physiol 98:477–481. https://doi.org/10.1152/japplphysiol.00130.2004
doi: 10.1152/japplphysiol.00130.2004 pubmed: 15448117
Rotter V, Nagaev I, Smith U (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278:45777–45784. https://doi.org/10.1074/jbc.M301977200
doi: 10.1074/jbc.M301977200 pubmed: 12952969
Sachan A, Singh A, Shukla S, Aggarwal S, Mir I, Yadav R (2020) Serum adipocytokines levels and their association with insulin sensitivity in morbidly obese individuals undergoing bariatric surgery. J Obes Metab Syndr 29:303–312
doi: 10.7570/jomes20090
Sadler JB, Lamb CA, Gould GW, Bryant NJ (2016) Iodixanol gradient centrifugation to separate components of the low-density membrane fraction from 3T3-L1 adipocytes. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot083709
doi: 10.1101/pdb.prot083709 pubmed: 26933244
Sano H, Peck GR, Blachon S, Lienhard GE (2015) A potential link between insulin signaling and GLUT4 translocation: association of Rab10-GTP with the exocytosis subunit Exoc6/6b. Biochem Biophys Res Commun 465:601–605. https://doi.org/10.1016/j.bbrc.2015.08.069
doi: 10.1016/j.bbrc.2015.08.069 pubmed: 26299925 pmcid: 4564306
Saraswathi V, Kumar N, Gopal T, Bhatt S, Ai W, Ma C, Talmon G, Desouza C (2020) Lauric acid versus palmitic acid: effects on adipose tissue inflammation, insulin resistance, and non-alcoholic fatty liver disease in obesity. Biology 9:346. https://doi.org/10.3390/biology9110346
doi: 10.3390/biology9110346 pmcid: 7690582
Sauer E, Babion I, Madea B, Courts C (2014) An evidence based strategy for normalization of quantitative PCR data from miRNA expression analysis in forensic organ tissue identification. Forensic Sci Int Genet 13:217–223. https://doi.org/10.1016/j.fsigen.2014.08.005
doi: 10.1016/j.fsigen.2014.08.005 pubmed: 25203915
Scherer PE (2006) Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55:1537–1545. https://doi.org/10.2337/db06-0263
doi: 10.2337/db06-0263 pubmed: 16731815
Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391–3399. https://doi.org/10.2337/diabetes.51.12.3391
doi: 10.2337/diabetes.51.12.3391 pubmed: 12453891
Shi C, Zhu L, Chen X, Gu N, Chen L, Zhu L, Yang L, Pang L, Guo X, Ji C, Zhang C (2014) IL-6 and TNF-a induced obesity-related inflammatory response through transcriptional regulation of miR-146b. J Interferon Cytokine Res 34:342–348. https://doi.org/10.1089/jir.2013.0078
doi: 10.1089/jir.2013.0078 pubmed: 24428800 pmcid: 4015473
Son YH, Ka S, Kim AY, Kim JB (2014) Regulation of adipocyte differentiation via microRNAs. Endocrinol Metab (Seoul) 29:122–135. https://doi.org/10.3803/EnM.2014.29.2.122
doi: 10.3803/EnM.2014.29.2.122
Steimle PA, Fulcher FK, Patel YM (2005) A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Biochem Biophys Res Commun 331:1560–1565. https://doi.org/10.1016/j.bbrc.2005.04.082
doi: 10.1016/j.bbrc.2005.04.082 pubmed: 15883051
Van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Møller K, Saltin B, Febbraio MA, Pedersen BK (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010. https://doi.org/10.1210/jc.2002-021687
doi: 10.1210/jc.2002-021687 pubmed: 12843134
Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE (2001) Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9:414–417. https://doi.org/10.1038/oby.2001.54
doi: 10.1038/oby.2001.54 pubmed: 11445664
Watanabe T, Hosoya H, Yonemura S (2007) Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells. Mol Biol Cell 18:605–616. https://doi.org/10.1091/mbc.e06-07-0590
doi: 10.1091/mbc.e06-07-0590 pubmed: 17151359 pmcid: 1783795
Woody S, Stall R, Ramos J, Patel YM (2013) Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes. PLoS One 8:e77248. https://doi.org/10.1371/journal.pone.0077248
doi: 10.1371/journal.pone.0077248 pubmed: 24116218 pmcid: 3792908

Auteurs

Maciej Błaszczyk (M)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.

Małgorzata Gajewska (M)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.

Marta Dymowska (M)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.

Alicja Majewska (A)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.

Tomasz Domoradzki (T)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.

Adam Prostek (A)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.

Rafał Pingwara (R)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.

Magdalena Hulanicka (M)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.

Katarzyna Grzelkowska-Kowalczyk (K)

Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland. katarzyna_grzelkowska_kowalczyk@sggw.edu.pl.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH