Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: a focus on PTP1B and LMW-PTP.


Journal

European journal of nutrition
ISSN: 1436-6215
Titre abrégé: Eur J Nutr
Pays: Germany
ID NLM: 100888704

Informations de publication

Date de publication:
Jun 2022
Historique:
received: 02 07 2021
accepted: 06 12 2021
pubmed: 24 1 2022
medline: 18 5 2022
entrez: 23 1 2022
Statut: ppublish

Résumé

The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.

Identifiants

pubmed: 35066640
doi: 10.1007/s00394-021-02776-w
pii: 10.1007/s00394-021-02776-w
doi:

Substances chimiques

Enzyme Inhibitors 0
Insulin 0
Plant Extracts 0
Tea 0
Receptor, Insulin EC 2.7.10.1
PTPN1 protein, human EC 3.1.3.48
Protein Tyrosine Phosphatase, Non-Receptor Type 1 EC 3.1.3.48
Protein Tyrosine Phosphatases EC 3.1.3.48

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1905-1918

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.

Références

Saeedi P, Petersohn I, Salpea P, et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843
Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98. https://doi.org/10.1038/nrendo.2017.151
doi: 10.1038/nrendo.2017.151 pubmed: 29219149
Wu Y, Ding Y, Tanaka Y, Zhang W (2014) Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 11:1185–1200. https://doi.org/10.7150/ijms.10001
doi: 10.7150/ijms.10001 pubmed: 25249787 pmcid: 4166864
DeFronzo RA (2009) From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795. https://doi.org/10.2337/db09-9028
doi: 10.2337/db09-9028 pubmed: 19336687 pmcid: 2661582
Meneses M, Silva B, Sousa M et al (2015) Antidiabetic drugs: mechanisms of action and potential outcomes on cellular metabolism. Curr Pharm Des 21:3606–3620. https://doi.org/10.2174/1381612821666150710145753
doi: 10.2174/1381612821666150710145753 pubmed: 26166608
Bailey CJ, Day C (2018) Treatment of type 2 diabetes: future approaches. Br Med Bull 126:123–137. https://doi.org/10.1093/brimed/ldy013
doi: 10.1093/brimed/ldy013 pubmed: 29897499
Maffi P, Secchi A (2017) The Burden of Diabetes: Emerging Data. In: Developments in Ophthalmology. pp 1–5
Ley SH, Hamdy O, Mohan V, Hu FB (2014) Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383:1999–2007. https://doi.org/10.1016/S0140-6736(14)60613-9
doi: 10.1016/S0140-6736(14)60613-9 pubmed: 24910231 pmcid: 4751088
Karri S, Sharma S, Hatware K, Patil K (2019) Natural anti-obesity agents and their therapeutic role in management of obesity: a future trend perspective. Biomed Pharmacother 110:224–238. https://doi.org/10.1016/j.biopha.2018.11.076
doi: 10.1016/j.biopha.2018.11.076 pubmed: 30481727
Goyal S, Gupta N, Chatterjee S, Nimesh S (2016) Natural plant extracts as potential therapeutic agents for the treatment of cancer. Curr Top Med Chem 17:96–106. https://doi.org/10.2174/1568026616666160530154407
doi: 10.2174/1568026616666160530154407
Dou QP (2019) Tea in health and disease. Nutrients 11:929. https://doi.org/10.3390/nu11040929
doi: 10.3390/nu11040929 pmcid: 6520965
Fu Q-Y, Li Q-S, Lin X-M et al (2017) Antidiabetic effects of tea. Molecules 22:849. https://doi.org/10.3390/molecules22050849
doi: 10.3390/molecules22050849 pmcid: 6154530
Ma J, Li Z, Xing S et al (2011) Tea contains potent inhibitors of tyrosine phosphatase PTP1B. Biochem Biophys Res Commun 407:98–102. https://doi.org/10.1016/j.bbrc.2011.02.116
doi: 10.1016/j.bbrc.2011.02.116 pubmed: 21371422 pmcid: 3070786
Kuban-Jankowska A, Kostrzewa T, Musial C, et al (2020) Green Tea Catechins Induce Inhibition of PTP1B Phosphatase in Breast Cancer Cells with Potent Anti-Cancer Properties: In Vitro Assay, Molecular Docking, and Dynamics Studies. Antioxidants 9:1208. https://doi.org/10.3390/antiox9121208
Eleftheriou P, Geronikaki A, Petrou A (2019) PTP1b inhibition, a promising approach for the treatment of diabetes type II. Curr Top Med Chem 19:246–263. https://doi.org/10.2174/1568026619666190201152153
doi: 10.2174/1568026619666190201152153 pubmed: 30714526
Stanford SM, Aleshin AE, Zhang V et al (2017) Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nat Chem Biol 13:624–632. https://doi.org/10.1038/nchembio.2344
doi: 10.1038/nchembio.2344 pubmed: 28346406 pmcid: 5435566
Perva-Uzunalić A, Škerget M, Knez Ž et al (2006) Extraction of active ingredients from green tea (Camellia sinensis): extraction efficiency of major catechins and caffeine. Food Chem 96:597–605. https://doi.org/10.1016/j.foodchem.2005.03.015
doi: 10.1016/j.foodchem.2005.03.015
Lori G, Cecchi L, Mulinacci N et al (2019) Honey extracts inhibit PTP1B, upregulate insulin receptor expression, and enhance glucose uptake in human HepG2 cells. Biomed Pharmacother 113:108752. https://doi.org/10.1016/j.biopha.2019.108752
doi: 10.1016/j.biopha.2019.108752 pubmed: 30927676
Ottanà R, Paoli P, Cappiello M, et al (2021) In Search for Multi-Target Ligands as Potential Agents for Diabetes Mellitus and Its Complications-A Structure-Activity Relationship Study on Inhibitors of Aldose Reductase and Protein Tyrosine Phosphatase 1B. Molecules 26:. https://doi.org/10.3390/molecules26020330
Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256
doi: 10.1002/jcc.21256 pubmed: 19399780 pmcid: 2760638
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084
doi: 10.1002/jcc.20084 pubmed: 15264254
Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. "Protein Eng Des Sel 8:127–134. https://doi.org/10.1093/protein/8.2.127
Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786. https://doi.org/10.1021/ci200227u
doi: 10.1021/ci200227u pubmed: 21919503
Shibata E, Kanno T, Tsuchiya A et al (2013) Free fatty acids inhibit protein tyrosine phosphatase 1B and activate Akt. Cell Physiol Biochem 32:871–879. https://doi.org/10.1159/000354489
doi: 10.1159/000354489 pubmed: 24107614
Zhao BT, Nguyen DH, Le DD et al (2018) Protein tyrosine phosphatase 1B inhibitors from natural sources. Arch Pharm Res 41:130–161. https://doi.org/10.1007/s12272-017-0997-8
doi: 10.1007/s12272-017-0997-8 pubmed: 29214599
Puius YA, Zhao Y, Sullivan M et al (1997) Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci USA 94:13420–13425. https://doi.org/10.1073/pnas.94.25.13420
doi: 10.1073/pnas.94.25.13420 pubmed: 9391040 pmcid: 28320
Tuomilehto J, Lindström J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350. https://doi.org/10.1056/NEJM200105033441801
doi: 10.1056/NEJM200105033441801 pubmed: 11333990
Mirmiran P (2014) Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: a review. World J Diabetes 5:267–281. https://doi.org/10.4239/wjd.v5.i3.267
doi: 10.4239/wjd.v5.i3.267 pubmed: 24936248 pmcid: 4058731
Serafini M, Del Rio D, Yao DN, et al (2011) Health Benefits of Tea
Xing L, Zhang H, Qi R et al (2019) Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem 67:1029–1043. https://doi.org/10.1021/acs.jafc.8b06146
doi: 10.1021/acs.jafc.8b06146 pubmed: 30653316
Wang R, Zhou W, Jiang X (2008) Reaction Kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J Agric Food Chem 56:2694–2701. https://doi.org/10.1021/jf0730338
doi: 10.1021/jf0730338 pubmed: 18361498
Fan F-Y, Shi M, Nie Y et al (2016) Differential behaviors of tea catechins under thermal processing: formation of non-enzymatic oligomers. Food Chem 196:347–354. https://doi.org/10.1016/j.foodchem.2015.09.056
doi: 10.1016/j.foodchem.2015.09.056 pubmed: 26593500
Kuzuhara T, Suganuma M, Fujiki H (2008) Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett 261:12–20. https://doi.org/10.1016/j.canlet.2007.10.037
doi: 10.1016/j.canlet.2007.10.037 pubmed: 18068893
Wiesmann C, Barr KJ, Kung J et al (2004) Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11:730–737. https://doi.org/10.1038/nsmb803
doi: 10.1038/nsmb803 pubmed: 15258570
Clifford MN, van der Hooft JJ, Crozier A (2013) Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am J Clin Nutr 98:1619S-1630S. https://doi.org/10.3945/ajcn.113.058958
doi: 10.3945/ajcn.113.058958 pubmed: 24172307
Chen Y-K, Cheung C, Reuhl KR et al (2011) Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/western-style diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem 59:11862–11871. https://doi.org/10.1021/jf2029016
doi: 10.1021/jf2029016 pubmed: 21932846 pmcid: 3243651
Bose M, Lambert JD, Ju J et al (2008) The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J Nutr 138:1677–1683. https://doi.org/10.1093/jn/138.9.1677
doi: 10.1093/jn/138.9.1677 pubmed: 18716169
Molinaro A, Becattini B, Solinas G (2020) Insulin signaling and glucose metabolism in different hepatoma cell lines deviate from hepatocyte physiology toward a convergent aberrant phenotype. Sci Rep 10:12031. https://doi.org/10.1038/s41598-020-68721-9
doi: 10.1038/s41598-020-68721-9 pubmed: 32694512 pmcid: 7374613
Wong CY, Al-Salami H, Dass CR (2020) C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 72:1667–1693. https://doi.org/10.1111/jphp.13359
doi: 10.1111/jphp.13359 pubmed: 32812252
Collins QF, Liu H-Y, Pi J et al (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282:30143–30149. https://doi.org/10.1074/jbc.M702390200
doi: 10.1074/jbc.M702390200 pubmed: 17724029
Wolfram S, Raederstorff D, Preller M et al (2006) Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 136:2512–2518. https://doi.org/10.1093/jn/136.10.2512
doi: 10.1093/jn/136.10.2512 pubmed: 16988119
Crettaz M, Kahn CR (1984) Insulin receptor regulation and desensitization in rat hepatoma cells: concomitant changes in receptor number and in binding affinity. Diabetes 33:477–485. https://doi.org/10.2337/diab.33.5.477
doi: 10.2337/diab.33.5.477 pubmed: 6144607
Yang W-M, Jeong H-J, Park S-Y, Lee W (2014) Saturated fatty acid-induced miR-195 impairs insulin signaling and glycogen metabolism in HepG2 cells. FEBS Lett 588:3939–3946. https://doi.org/10.1016/j.febslet.2014.09.006
doi: 10.1016/j.febslet.2014.09.006 pubmed: 25240198
Yang W-M, Jeong H-J, Park S-W, Lee W (2015) Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes. Mol Nutr Food Res 59:2303–2314. https://doi.org/10.1002/mnfr.201500107
doi: 10.1002/mnfr.201500107 pubmed: 26179126
Li Y, Zhong Y, Cheng Q, et al (2020) miR-378b Regulates Insulin Sensitivity by Targeting Insulin Receptor and p110α in Alcohol-Induced Hepatic Steatosis. Front Pharmacol 11:. https://doi.org/10.3389/fphar.2020.00717
Na B, Nguyen P-H, Zhao B-T et al (2016) Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Pharm Biol 54:474–480. https://doi.org/10.3109/13880209.2015.1048372
doi: 10.3109/13880209.2015.1048372 pubmed: 26084800
Zhang J, Sasaki T, Li W et al (2018) Identification of caffeoylquinic acid derivatives as natural protein tyrosine phosphatase 1B inhibitors from Artemisia princeps. Bioorg Med Chem Lett 28:1194–1197. https://doi.org/10.1016/j.bmcl.2018.02.052
doi: 10.1016/j.bmcl.2018.02.052 pubmed: 29525218
Lipchock JM, Hendrickson HP, Douglas BB et al (2017) Characterization of Protein tyrosine phosphatase 1B inhibition by chlorogenic acid and cichoric acid. Biochemistry 56:96–106. https://doi.org/10.1021/acs.biochem.6b01025
doi: 10.1021/acs.biochem.6b01025 pubmed: 27959494
Dixit M, Tripathi BK, Srivastava AK, Goel A (2005) Synthesis of functionalized acetophenones as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 15:3394–3397. https://doi.org/10.1016/j.bmcl.2005.05.024
doi: 10.1016/j.bmcl.2005.05.024 pubmed: 15951172
Haftchenary S, Jouk AO, Aubry I et al (2015) Identification of bidentate salicylic acid inhibitors of PTP1B. ACS Med Chem Lett 6:982–986. https://doi.org/10.1021/acsmedchemlett.5b00171
doi: 10.1021/acsmedchemlett.5b00171 pubmed: 26396684 pmcid: 4569880
Shrestha S, Bhattarai BR, Lee K-H, Cho H (2007) Mono- and disalicylic acid derivatives: PTP1B inhibitors as potential anti-obesity drugs. Bioorg Med Chem 15:6535–6548. https://doi.org/10.1016/j.bmc.2007.07.010
doi: 10.1016/j.bmc.2007.07.010 pubmed: 17692525
Barik SK, Russell WR, Dehury B et al (2019) Dietary phenolics other than anthocyanins inhibit PTP1B; an in vitro and in silico validation. Proc Nutr Soc 78:E25. https://doi.org/10.1017/S0029665119000296
doi: 10.1017/S0029665119000296

Auteurs

Massimo Genovese (M)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.

Simone Luti (S)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.

Elisa Pardella (E)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy. elisa.pardella@unifi.it.

Mirella Vivoli-Vega (M)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.

Luigia Pazzagli (L)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.

Matteo Parri (M)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.

Anna Caselli (A)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.

Paolo Cirri (P)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.

Paolo Paoli (P)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH