Correction of a Factor VIII genomic inversion with designer-recombinases.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
20 01 2022
Historique:
received: 26 10 2021
accepted: 22 12 2021
entrez: 21 1 2022
pubmed: 22 1 2022
medline: 16 2 2022
Statut: epublish

Résumé

Despite advances in nuclease-based genome editing technologies, correcting human disease-causing genomic inversions remains a challenge. Here, we describe the potential use of a recombinase-based system to correct the 140 kb inversion of the F8 gene frequently found in patients diagnosed with severe Hemophilia A. Employing substrate-linked directed molecular evolution, we develop a coupled heterodimeric recombinase system (RecF8) achieving 30% inversion of the target sequence in human tissue culture cells. Transient RecF8 treatment of endothelial cells, differentiated from patient-derived induced pluripotent stem cells (iPSCs) of a hemophilic donor, results in 12% correction of the inversion and restores Factor VIII mRNA expression. In this work, we present designer-recombinases as an efficient and specific means towards treatment of monogenic diseases caused by large gene inversions.

Identifiants

pubmed: 35058465
doi: 10.1038/s41467-022-28080-7
pii: 10.1038/s41467-022-28080-7
pmc: PMC8776779
doi:

Substances chimiques

Recombinases 0
Factor VIII 9001-27-8

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

422

Informations de copyright

© 2022. The Author(s).

Références

Lynn, S. et al. How the EUCERD Joint action supported initiatives on rare diseases. Eur. J. Med. Genet. 60, 185–189 (2017).
pubmed: 28087401 doi: 10.1016/j.ejmg.2017.01.002
Ganesan, K., Kulandaisamy, A., Binny Priya, S. & Gromiha, M. M. HuVarBase: a human variant database with comprehensive information at gene and protein levels. PLoS ONE 14, e0210475 (2019).
pubmed: 30703169 pmcid: 6354970 doi: 10.1371/journal.pone.0210475
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).
pubmed: 20717154 doi: 10.1038/nrg2842
Carroll, D. Genome editing: past, present, and future. Yale J. Biol. Med. 90, 653–659 (2017).
pubmed: 29259529 pmcid: 5733845
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
pubmed: 32572269 doi: 10.1038/s41587-020-0561-9
Park, C.-Y. et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. USA 111, 9253–9258 (2014).
pubmed: 24927536 pmcid: 4078797 doi: 10.1073/pnas.1323941111
Park, C.-Y. et al. Functional correction of large Factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17, 213–220 (2015).
pubmed: 26212079 doi: 10.1016/j.stem.2015.07.001
Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 7, 2902–2906 (2008).
pubmed: 18769152 doi: 10.4161/cc.7.18.6679
Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).
pubmed: 30010673 pmcid: 6390938 doi: 10.1038/nbt.4192
Adikusuma, F. et al. Large deletions induced by Cas9 cleavage. Nature 560, E8–E9 (2018).
pubmed: 30089922 doi: 10.1038/s41586-018-0380-z
Meinke, G., Bohm, A., Hauber, J., Pisabarro, M. T. & Buchholz, F. Cre recombinase and other tyrosine recombinases. Chem. Rev. 116, 12785–12820 (2016).
pubmed: 27163859 doi: 10.1021/acs.chemrev.6b00077
Olorunniji, F. J., Rosser, S. J. & Stark, W. M. Site-specific recombinases: molecular machines for the genetic revolution. Biochem. J. 473, 673–684 (2016).
pubmed: 26965385 doi: 10.1042/BJ20151112
Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).
pubmed: 14723844 doi: 10.1016/S1534-5807(03)00399-X
Buchholz, F. & Stewart, A. F. Alteration of Cre recombinase site-specificity by substrate-linked protein evolution. Nature Biotechnol. 19, 1047–1052 (2001).
doi: 10.1038/nbt1101-1047
Santoro, S. W. & Schultz, P. G. Directed evolution of the site-specificity of Cre recombinase. Proc. Natl Acad. Sci. USA 99, 4185–4190 (2002).
pubmed: 11904359 pmcid: 123623 doi: 10.1073/pnas.022039799
Sarkar, I., Hauber, I., Hauber, J. & Buchholz, F. HIV-1 proviral DNA excision using an evolved recombinase. Science 316, 1912–1915 (2007).
pubmed: 17600219 doi: 10.1126/science.1141453
Karpinski, J. et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat. Biotechnol. 34, 401–409 (2016).
pubmed: 26900663 doi: 10.1038/nbt.3467
Oldenburg, J., Pezeshkpoor, B. & Pavlova, A. Historical review on genetic analysis in hemophilia A. Semin. Thromb. Hemost. 40, 895–902 (2014).
pubmed: 25377322 doi: 10.1055/s-0034-1395161
Lannoy, N. & Hermans, C. Principles of genetic variations and molecular diseases: applications in hemophilia A. Crit. Rev. Oncol. Hematol. 104, 1–8 (2016).
pubmed: 27296059 doi: 10.1016/j.critrevonc.2016.04.005
Graw, J. et al. Haemophilia A: from mutation analysis to new therapies. Nat. Rev. Genet. 6, 488–501 (2005).
pubmed: 15931172 doi: 10.1038/nrg1617
Lansing, F. et al. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Res. 48, 472–485 (2020).
pubmed: 31745551 doi: 10.1093/nar/gkz1078
Abi-Ghanem, J. et al. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach. Nucleic Acids Res. 41, 2394–2403 (2013).
pubmed: 23275541 doi: 10.1093/nar/gks1308
Ennifar, E., Meyer, J. E. W., Buchholz, F., Stewart, A. F. & Suck, D. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Nucleic Acids Res. 31, 5449–5460 (2003).
pubmed: 12954782 pmcid: 203317 doi: 10.1093/nar/gkg732
Guo, F., Gopaul, D. N. & Van Duyne, G. D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).
pubmed: 9288963 doi: 10.1038/37925
Surendranath, V., Chusainow, J., Hauber, J., Buchholz, F. & Habermann, B. H. SeLOX–a locus of recombination site search tool for the detection and directed evolution of site-specific recombination systems. Nucleic Acids Res. 38, W293–W298 (2010).
pubmed: 20529878 pmcid: 2896191 doi: 10.1093/nar/gkq523
Chen, X., Zaro, J. L. & Shen, W.-C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).
pubmed: 23026637 doi: 10.1016/j.addr.2012.09.039
Everett, L. A., Cleuren, A. C. A., Khoriaty, R. N. & Ginsburg, D. Murine coagulation factor VIII is synthesized in endothelial cells. Blood 123, 3697–3705 (2014).
pubmed: 24719406 pmcid: 4055920 doi: 10.1182/blood-2014-02-554501
Fahs, S. A., Hille, M. T., Shi, Q., Weiler, H. & Montgomery, R. R. A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 123, 3706–3713 (2014).
pubmed: 24705491 pmcid: 4055921 doi: 10.1182/blood-2014-02-555151
Prakash, V., Moore, M. & Yáñez-Muñoz, R. J. Current progress in therapeutic gene editing for monogenic diseases. Mol. Ther. 24, 465–474 (2016).
pubmed: 26765770 pmcid: 4786935 doi: 10.1038/mt.2016.5
Zheng, B. et al. Engineering a mouse balancer chromosome. Nat. Genet. 22, 375–378 (1999).
pubmed: 10431243 doi: 10.1038/11949
Yu, Y. & Bradley, A. Engineering chromosomal rearrangements in mice. Nat. Rev. Genet. 2, 780–790 (2001).
pubmed: 11584294 doi: 10.1038/35093564
Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).
pubmed: 30710128 pmcid: 6927556 doi: 10.1038/s41573-019-0012-9
Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).
pubmed: 32251383 pmcid: 7735425 doi: 10.1038/s41565-020-0669-6
Eroshenko, N. & Church, G. M. Mutants of Cre recombinase with improved accuracy. Nat. Commun. 4, 2509 (2013).
pubmed: 24056590 doi: 10.1038/ncomms3509
Gaj, T. et al. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am. Chem. Soc. 136, 5047–5056 (2014).
pubmed: 24611715 pmcid: 3985937 doi: 10.1021/ja4130059
Zhang, C. et al. Redesign of the monomer-monomer interface of Cre recombinase yields an obligate heterotetrameric complex. Nucleic Acids Res. 43, 9076–9085 (2015).
pubmed: 26365240 pmcid: 4605323 doi: 10.1093/nar/gkv901
Hoersten, J. et al. Pairing of single mutations yields obligate Cre-type site-specific recombinases. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab1240 (2021).
Malan, V. et al. Sotos syndrome caused by a paracentric inversion disrupting the NSD1 gene. Clin. Genet. 73, 89–91 (2008).
pubmed: 18042263 doi: 10.1111/j.1399-0004.2007.00916.x
Bondeson, M. L. et al. Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum. Mol. Genet. 4, 615–621 (1995).
pubmed: 7633410 doi: 10.1093/hmg/4.4.615
Feuk, L. Inversion variants in the human genome: role in disease and genome architecture. Genome Med. 2, 11–18 (2010).
pubmed: 20156332 pmcid: 2847702 doi: 10.1186/gm132
Puig, M. et al. Determining the impact of uncharacterized inversions in the human genome by droplet digital PCR. Genome Res. 30, 724–735 (2020).
pubmed: 32424072 pmcid: 7263195 doi: 10.1101/gr.255273.119
Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
pubmed: 30976793 pmcid: 6602479 doi: 10.1093/nar/gkz268
Prüfer, K. et al. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 24, 1530–1531 (2008).
pubmed: 18467344 pmcid: 2718670 doi: 10.1093/bioinformatics/btn223
Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).
pubmed: 28333914 pmcid: 5526071 doi: 10.1038/nprot.2017.016
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Takebe, T. et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 21, 2661–2670 (2017).
pubmed: 29212014 doi: 10.1016/j.celrep.2017.11.005
Sürün, D. et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR Base editors and prime editors. Genes (Basel) 11, 511 (2020).
doi: 10.3390/genes11050511
Church, D. M. et al. Modernizing reference genome assemblies. PLoS Biol. 9, e1001091 (2011).
pubmed: 21750661 pmcid: 3130012 doi: 10.1371/journal.pbio.1001091
Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinformatics 51, 11.14.1–11.14.19 (2015).
doi: 10.1002/0471250953.bi1114s51
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354–9355 (2019).
pubmed: 31249361 pmcid: 6597582 doi: 10.1038/s41598-019-45839-z
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
pubmed: 12045153 pmcid: 186604 doi: 10.1101/gr.229102
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).
pubmed: 19458158 pmcid: 2703892 doi: 10.1093/nar/gkp335
Hermann, M. et al. Binary recombinase systems for high-resolution conditional mutagenesis. Nucleic Acids Res. 42, 3894–3907 (2014).
pubmed: 24413561 pmcid: 3973285 doi: 10.1093/nar/gkt1361
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).
pubmed: 30357393 doi: 10.1093/nar/gky955
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).
pubmed: 29713083 pmcid: 5990442 doi: 10.1038/s41592-018-0001-7
Shao, H. et al. npInv: accurate detection and genotyping of inversions using long read sub-alignment. BMC Bioinformatics 19, 261–13 (2018).
pubmed: 30001702 pmcid: 6044046 doi: 10.1186/s12859-018-2252-9
Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061–11 (2017).
pubmed: 28117401 pmcid: 5286201 doi: 10.1038/ncomms14061
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
pubmed: 23950696 pmcid: 3738458 doi: 10.1371/journal.pcbi.1003118
Rodriguez-Muela, N. et al. Single-cell analysis of SMN reveals its broader role in neuromuscular disease. Cell Rep. 18, 1484–1498 (2017).
pubmed: 28178525 pmcid: 5463539 doi: 10.1016/j.celrep.2017.01.035

Auteurs

Felix Lansing (F)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Liliya Mukhametzyanova (L)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Teresa Rojo-Romanos (T)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Kentaro Iwasawa (K)

Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM) Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Masaki Kimura (M)

Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM) Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Maciej Paszkowski-Rogacz (M)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Janet Karpinski (J)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Tobias Grass (T)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.
German Center for Neurodegenerative Diseases, Helmholtz Association, 01307, Dresden, Germany.

Jan Sonntag (J)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Paul Martin Schneider (PM)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Ceren Günes (C)

Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster, 48149, Germany.

Jenna Hoersten (J)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Lukas Theo Schmitt (LT)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany.

Natalia Rodriguez-Muela (N)

German Center for Neurodegenerative Diseases, Helmholtz Association, 01307, Dresden, Germany.

Ralf Knöfler (R)

Department of Pediatric Hematology and Oncology, University Hospital Dresden, 01307, Dresden, Germany.

Takanori Takebe (T)

Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM) Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.

Frank Buchholz (F)

Medical Systems Biology, Medical Faculty, Technical University Dresden, 01307, Dresden, Germany. frank.buchholz@tu-dresden.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH