Correction of a Factor VIII genomic inversion with designer-recombinases.
Amino Acid Sequence
Base Sequence
Cell Differentiation
Chromosome Inversion
/ genetics
Clone Cells
Directed Molecular Evolution
Endothelial Cells
/ cytology
Exons
/ genetics
Factor VIII
/ genetics
HEK293 Cells
HeLa Cells
Humans
Induced Pluripotent Stem Cells
/ metabolism
Inverted Repeat Sequences
/ genetics
Recombinases
/ metabolism
Recombination, Genetic
/ genetics
Substrate Specificity
Whole Genome Sequencing
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
20 01 2022
20 01 2022
Historique:
received:
26
10
2021
accepted:
22
12
2021
entrez:
21
1
2022
pubmed:
22
1
2022
medline:
16
2
2022
Statut:
epublish
Résumé
Despite advances in nuclease-based genome editing technologies, correcting human disease-causing genomic inversions remains a challenge. Here, we describe the potential use of a recombinase-based system to correct the 140 kb inversion of the F8 gene frequently found in patients diagnosed with severe Hemophilia A. Employing substrate-linked directed molecular evolution, we develop a coupled heterodimeric recombinase system (RecF8) achieving 30% inversion of the target sequence in human tissue culture cells. Transient RecF8 treatment of endothelial cells, differentiated from patient-derived induced pluripotent stem cells (iPSCs) of a hemophilic donor, results in 12% correction of the inversion and restores Factor VIII mRNA expression. In this work, we present designer-recombinases as an efficient and specific means towards treatment of monogenic diseases caused by large gene inversions.
Identifiants
pubmed: 35058465
doi: 10.1038/s41467-022-28080-7
pii: 10.1038/s41467-022-28080-7
pmc: PMC8776779
doi:
Substances chimiques
Recombinases
0
Factor VIII
9001-27-8
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
422Informations de copyright
© 2022. The Author(s).
Références
Lynn, S. et al. How the EUCERD Joint action supported initiatives on rare diseases. Eur. J. Med. Genet. 60, 185–189 (2017).
pubmed: 28087401
doi: 10.1016/j.ejmg.2017.01.002
Ganesan, K., Kulandaisamy, A., Binny Priya, S. & Gromiha, M. M. HuVarBase: a human variant database with comprehensive information at gene and protein levels. PLoS ONE 14, e0210475 (2019).
pubmed: 30703169
pmcid: 6354970
doi: 10.1371/journal.pone.0210475
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).
pubmed: 20717154
doi: 10.1038/nrg2842
Carroll, D. Genome editing: past, present, and future. Yale J. Biol. Med. 90, 653–659 (2017).
pubmed: 29259529
pmcid: 5733845
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
pubmed: 32572269
doi: 10.1038/s41587-020-0561-9
Park, C.-Y. et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. USA 111, 9253–9258 (2014).
pubmed: 24927536
pmcid: 4078797
doi: 10.1073/pnas.1323941111
Park, C.-Y. et al. Functional correction of large Factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17, 213–220 (2015).
pubmed: 26212079
doi: 10.1016/j.stem.2015.07.001
Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 7, 2902–2906 (2008).
pubmed: 18769152
doi: 10.4161/cc.7.18.6679
Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).
pubmed: 30010673
pmcid: 6390938
doi: 10.1038/nbt.4192
Adikusuma, F. et al. Large deletions induced by Cas9 cleavage. Nature 560, E8–E9 (2018).
pubmed: 30089922
doi: 10.1038/s41586-018-0380-z
Meinke, G., Bohm, A., Hauber, J., Pisabarro, M. T. & Buchholz, F. Cre recombinase and other tyrosine recombinases. Chem. Rev. 116, 12785–12820 (2016).
pubmed: 27163859
doi: 10.1021/acs.chemrev.6b00077
Olorunniji, F. J., Rosser, S. J. & Stark, W. M. Site-specific recombinases: molecular machines for the genetic revolution. Biochem. J. 473, 673–684 (2016).
pubmed: 26965385
doi: 10.1042/BJ20151112
Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).
pubmed: 14723844
doi: 10.1016/S1534-5807(03)00399-X
Buchholz, F. & Stewart, A. F. Alteration of Cre recombinase site-specificity by substrate-linked protein evolution. Nature Biotechnol. 19, 1047–1052 (2001).
doi: 10.1038/nbt1101-1047
Santoro, S. W. & Schultz, P. G. Directed evolution of the site-specificity of Cre recombinase. Proc. Natl Acad. Sci. USA 99, 4185–4190 (2002).
pubmed: 11904359
pmcid: 123623
doi: 10.1073/pnas.022039799
Sarkar, I., Hauber, I., Hauber, J. & Buchholz, F. HIV-1 proviral DNA excision using an evolved recombinase. Science 316, 1912–1915 (2007).
pubmed: 17600219
doi: 10.1126/science.1141453
Karpinski, J. et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat. Biotechnol. 34, 401–409 (2016).
pubmed: 26900663
doi: 10.1038/nbt.3467
Oldenburg, J., Pezeshkpoor, B. & Pavlova, A. Historical review on genetic analysis in hemophilia A. Semin. Thromb. Hemost. 40, 895–902 (2014).
pubmed: 25377322
doi: 10.1055/s-0034-1395161
Lannoy, N. & Hermans, C. Principles of genetic variations and molecular diseases: applications in hemophilia A. Crit. Rev. Oncol. Hematol. 104, 1–8 (2016).
pubmed: 27296059
doi: 10.1016/j.critrevonc.2016.04.005
Graw, J. et al. Haemophilia A: from mutation analysis to new therapies. Nat. Rev. Genet. 6, 488–501 (2005).
pubmed: 15931172
doi: 10.1038/nrg1617
Lansing, F. et al. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Res. 48, 472–485 (2020).
pubmed: 31745551
doi: 10.1093/nar/gkz1078
Abi-Ghanem, J. et al. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach. Nucleic Acids Res. 41, 2394–2403 (2013).
pubmed: 23275541
doi: 10.1093/nar/gks1308
Ennifar, E., Meyer, J. E. W., Buchholz, F., Stewart, A. F. & Suck, D. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Nucleic Acids Res. 31, 5449–5460 (2003).
pubmed: 12954782
pmcid: 203317
doi: 10.1093/nar/gkg732
Guo, F., Gopaul, D. N. & Van Duyne, G. D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).
pubmed: 9288963
doi: 10.1038/37925
Surendranath, V., Chusainow, J., Hauber, J., Buchholz, F. & Habermann, B. H. SeLOX–a locus of recombination site search tool for the detection and directed evolution of site-specific recombination systems. Nucleic Acids Res. 38, W293–W298 (2010).
pubmed: 20529878
pmcid: 2896191
doi: 10.1093/nar/gkq523
Chen, X., Zaro, J. L. & Shen, W.-C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).
pubmed: 23026637
doi: 10.1016/j.addr.2012.09.039
Everett, L. A., Cleuren, A. C. A., Khoriaty, R. N. & Ginsburg, D. Murine coagulation factor VIII is synthesized in endothelial cells. Blood 123, 3697–3705 (2014).
pubmed: 24719406
pmcid: 4055920
doi: 10.1182/blood-2014-02-554501
Fahs, S. A., Hille, M. T., Shi, Q., Weiler, H. & Montgomery, R. R. A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 123, 3706–3713 (2014).
pubmed: 24705491
pmcid: 4055921
doi: 10.1182/blood-2014-02-555151
Prakash, V., Moore, M. & Yáñez-Muñoz, R. J. Current progress in therapeutic gene editing for monogenic diseases. Mol. Ther. 24, 465–474 (2016).
pubmed: 26765770
pmcid: 4786935
doi: 10.1038/mt.2016.5
Zheng, B. et al. Engineering a mouse balancer chromosome. Nat. Genet. 22, 375–378 (1999).
pubmed: 10431243
doi: 10.1038/11949
Yu, Y. & Bradley, A. Engineering chromosomal rearrangements in mice. Nat. Rev. Genet. 2, 780–790 (2001).
pubmed: 11584294
doi: 10.1038/35093564
Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).
pubmed: 30710128
pmcid: 6927556
doi: 10.1038/s41573-019-0012-9
Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).
pubmed: 32251383
pmcid: 7735425
doi: 10.1038/s41565-020-0669-6
Eroshenko, N. & Church, G. M. Mutants of Cre recombinase with improved accuracy. Nat. Commun. 4, 2509 (2013).
pubmed: 24056590
doi: 10.1038/ncomms3509
Gaj, T. et al. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am. Chem. Soc. 136, 5047–5056 (2014).
pubmed: 24611715
pmcid: 3985937
doi: 10.1021/ja4130059
Zhang, C. et al. Redesign of the monomer-monomer interface of Cre recombinase yields an obligate heterotetrameric complex. Nucleic Acids Res. 43, 9076–9085 (2015).
pubmed: 26365240
pmcid: 4605323
doi: 10.1093/nar/gkv901
Hoersten, J. et al. Pairing of single mutations yields obligate Cre-type site-specific recombinases. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab1240 (2021).
Malan, V. et al. Sotos syndrome caused by a paracentric inversion disrupting the NSD1 gene. Clin. Genet. 73, 89–91 (2008).
pubmed: 18042263
doi: 10.1111/j.1399-0004.2007.00916.x
Bondeson, M. L. et al. Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum. Mol. Genet. 4, 615–621 (1995).
pubmed: 7633410
doi: 10.1093/hmg/4.4.615
Feuk, L. Inversion variants in the human genome: role in disease and genome architecture. Genome Med. 2, 11–18 (2010).
pubmed: 20156332
pmcid: 2847702
doi: 10.1186/gm132
Puig, M. et al. Determining the impact of uncharacterized inversions in the human genome by droplet digital PCR. Genome Res. 30, 724–735 (2020).
pubmed: 32424072
pmcid: 7263195
doi: 10.1101/gr.255273.119
Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
pubmed: 30976793
pmcid: 6602479
doi: 10.1093/nar/gkz268
Prüfer, K. et al. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 24, 1530–1531 (2008).
pubmed: 18467344
pmcid: 2718670
doi: 10.1093/bioinformatics/btn223
Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).
pubmed: 28333914
pmcid: 5526071
doi: 10.1038/nprot.2017.016
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903
pmcid: 4486245
doi: 10.1038/nmeth.3047
Takebe, T. et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 21, 2661–2670 (2017).
pubmed: 29212014
doi: 10.1016/j.celrep.2017.11.005
Sürün, D. et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR Base editors and prime editors. Genes (Basel) 11, 511 (2020).
doi: 10.3390/genes11050511
Church, D. M. et al. Modernizing reference genome assemblies. PLoS Biol. 9, e1001091 (2011).
pubmed: 21750661
pmcid: 3130012
doi: 10.1371/journal.pbio.1001091
Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinformatics 51, 11.14.1–11.14.19 (2015).
doi: 10.1002/0471250953.bi1114s51
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354–9355 (2019).
pubmed: 31249361
pmcid: 6597582
doi: 10.1038/s41598-019-45839-z
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
pubmed: 12045153
pmcid: 186604
doi: 10.1101/gr.229102
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).
pubmed: 19458158
pmcid: 2703892
doi: 10.1093/nar/gkp335
Hermann, M. et al. Binary recombinase systems for high-resolution conditional mutagenesis. Nucleic Acids Res. 42, 3894–3907 (2014).
pubmed: 24413561
pmcid: 3973285
doi: 10.1093/nar/gkt1361
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).
pubmed: 30357393
doi: 10.1093/nar/gky955
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).
pubmed: 29713083
pmcid: 5990442
doi: 10.1038/s41592-018-0001-7
Shao, H. et al. npInv: accurate detection and genotyping of inversions using long read sub-alignment. BMC Bioinformatics 19, 261–13 (2018).
pubmed: 30001702
pmcid: 6044046
doi: 10.1186/s12859-018-2252-9
Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061–11 (2017).
pubmed: 28117401
pmcid: 5286201
doi: 10.1038/ncomms14061
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
pubmed: 23950696
pmcid: 3738458
doi: 10.1371/journal.pcbi.1003118
Rodriguez-Muela, N. et al. Single-cell analysis of SMN reveals its broader role in neuromuscular disease. Cell Rep. 18, 1484–1498 (2017).
pubmed: 28178525
pmcid: 5463539
doi: 10.1016/j.celrep.2017.01.035