Metabolomics reveals sex-specific pathways associated with changes in adiposity and muscle mass in a cohort of Mexican adolescents.


Journal

Pediatric obesity
ISSN: 2047-6310
Titre abrégé: Pediatr Obes
Pays: England
ID NLM: 101572033

Informations de publication

Date de publication:
06 2022
Historique:
received: 30 04 2021
accepted: 13 12 2021
pubmed: 14 1 2022
medline: 14 5 2022
entrez: 13 1 2022
Statut: ppublish

Résumé

Alterations in body composition (BC) during adolescence relates to future metabolic risk, yet underlying mechanisms remain unclear. To assess the association between the metabolome with changes in adiposity (body mass index [BMI], waist circumference [WC], triceps skinfold [TS], fat percentage [BF%]) and muscle mass (MM). In Mexican adolescents (n = 352), untargeted serum metabolomics was profiled at baseline. and data were reduced by pairing hierarchical clustering with confirmatory factor analysis, yielding 30 clusters with 51 singleton metabolites. At the baseline and follow-up visits (1.6-3.5 years apart), anthropometry was collected to identify associations between baseline metabolite clusters and change in BC (∆) using seemingly unrelated and linear regression. Between visits, MM increased in boys and adiposity increased in girls. Sex differences were observed between metabolite clusters and changes in BC. In boys, aromatic amino acids (AAA), branched chain amino acids (BCAA) and fatty acid oxidation metabolites were associated with increases in ∆BMI, and ∆BF%. Phospholipids were associated with decreases in ∆TS and ∆MM. Negative associations were observed for ∆MM in boys with a cluster including AAA and BCAA, whereas positive associations were found for a cluster containing tryptophan metabolites. Few associations were observed between metabolites and BC change in girls, with one cluster comprising methionine, proline and lipids associated with decreases in ∆BMI, ∆WC and ∆MM. Sex-specific associations between the metabolome and change in BC were observed, highlighting metabolic pathways underlying adolescent physical growth.

Sections du résumé

BACKGROUND
Alterations in body composition (BC) during adolescence relates to future metabolic risk, yet underlying mechanisms remain unclear.
OBJECTIVES
To assess the association between the metabolome with changes in adiposity (body mass index [BMI], waist circumference [WC], triceps skinfold [TS], fat percentage [BF%]) and muscle mass (MM).
METHODS
In Mexican adolescents (n = 352), untargeted serum metabolomics was profiled at baseline. and data were reduced by pairing hierarchical clustering with confirmatory factor analysis, yielding 30 clusters with 51 singleton metabolites. At the baseline and follow-up visits (1.6-3.5 years apart), anthropometry was collected to identify associations between baseline metabolite clusters and change in BC (∆) using seemingly unrelated and linear regression.
RESULTS
Between visits, MM increased in boys and adiposity increased in girls. Sex differences were observed between metabolite clusters and changes in BC. In boys, aromatic amino acids (AAA), branched chain amino acids (BCAA) and fatty acid oxidation metabolites were associated with increases in ∆BMI, and ∆BF%. Phospholipids were associated with decreases in ∆TS and ∆MM. Negative associations were observed for ∆MM in boys with a cluster including AAA and BCAA, whereas positive associations were found for a cluster containing tryptophan metabolites. Few associations were observed between metabolites and BC change in girls, with one cluster comprising methionine, proline and lipids associated with decreases in ∆BMI, ∆WC and ∆MM.
CONCLUSION
Sex-specific associations between the metabolome and change in BC were observed, highlighting metabolic pathways underlying adolescent physical growth.

Identifiants

pubmed: 35023314
doi: 10.1111/ijpo.12887
doi:

Substances chimiques

Amino Acids, Branched-Chain 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12887

Subventions

Organisme : NIEHS NIH HHS
ID : P01 ES022844
Pays : United States
Organisme : NIEHS NIH HHS
ID : P20 ES018171
Pays : United States
Organisme : NIDDK NIH HHS
ID : T32 DK007245
Pays : United States
Organisme : NIEHS NIH HHS
ID : U2C ES026553
Pays : United States

Informations de copyright

© 2022 World Obesity Federation.

Références

Siervogel RM, Demerath EW, Schubert C, et al. Puberty and body composition. Horm Res. 2003;60(Suppl 1):36-45. doi:10.1159/000071224
Gjaerde LK, Gamborg M, Angquist L, Truelsen TC, Sorensen TIA, Baker JL. Association of childhood body mass index and change in body mass index with first adult ischemic stroke. JAMA Neurol. 2017;74(11):1312-1318. doi:10.1001/jamaneurol.2017.1627
Kindblom JM, Bygdell M, Sonden A, Celind J, Rosengren A, Ohlsson C. BMI change during puberty and the risk of heart failure. J Intern Med. 2018;283(6):558-567. doi:10.1111/joim.12741
Ohlsson C, Bygdell M, Sonden A, Jern C, Rosengren A, Kindblom JM. BMI increase through puberty and adolescence is associated with risk of adult stroke. Neurology. 2017;89(4):363-369. doi:10.1212/WNL.0000000000004158
Ohlsson C, Bygdell M, Sonden A, Rosengren A, Kindblom JM. Association between excessive BMI increase during puberty and risk of cardiovascular mortality in adult men: a population-based cohort study. Lancet Diabetes Endocrinol. 2016;4(12):1017-1024. doi:10.1016/S2213-8587(16)30273-X
Butte NF, Liu Y, Zakeri IF, et al. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr. 2015;102(2):256-267. doi:10.3945/ajcn.115.111872
Mihalik SJ, Michaliszyn SF, de las Heras J, et al. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care. 2012;35(3):605-611. doi:10.2337/DC11-1577
Perng W, Gillman MW, Fleisch AF, et al. Metabolomic profiles and childhood obesity. Obesity (Silver Spring). 2014;22(12):2570-2578. doi:10.1002/oby.20901
Wang Y, Jiang CT, Song JY, Song QY, Ma J, Wang HJ. Lipidomic profile revealed the association of plasma lysophosphatidylcholines with adolescent obesity. Biomed Res Int. 2019;2019:1382418. doi:10.1155/2019/1382418
McCormack SE, Shaham O, McCarthy MA, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013;8(1):52-61. doi:10.1111/j.2047-6310.2012.00087.x
LaBarre JL, Peterson KE, Kachman MT, et al. Mitochondrial nutrient utilization underlying the association between metabolites and insulin resistance in adolescents. J Clin Endocrinol Metab. 2020;105(7):2442-2455. doi:10.1210/clinem/dgaa260
Perng W, Hector EC, Song PXK, et al. Metabolomic determinants of metabolic risk in Mexican adolescents. Obesity (Silver Spring). 2017;25(9):1594-1602. doi:10.1002/oby.21926
Perng W, Tang L, Song PXK, Tellez-Rojo MM, Cantoral A, Peterson KE. Metabolomic profiles and development of metabolic risk during the pubertal transition: a prospective study in the ELEMENT project. Pediatr Res. 2019;85(3):262-268. doi:10.1038/s41390-018-0195-5
Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311-326. doi:10.1016/j.cmet.2009.02.002
Wahl S, Holzapfel C, Yu Z, et al. Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics. 2013;9(6):1157-1167. doi:10.1007/s11306-013-0550-9
Audano M, Maldini M, De Fabiani E, Mitro N, Caruso D. Gender-related metabolomics and lipidomics: from experimental animal models to clinical evidence. J Proteome. 2018;178:82-91. doi:10.1016/j.jprot.2017.11.001
Perng W, Tamayo-Ortiz M, Tang L, et al. Early life exposure in Mexico to ENvironmental toxicants (ELEMENT) project. BMJ Open. 2019;9(8):e030427. doi:10.1136/bmjopen-2019-030427
Dobroch J, Ciesluk K, Sawicka-Zukowska M, Krawczuk-Rybak M. Body composition measurements in paediatrics - a review. Part 1. Pediatr Endocrinol Diabetes Metab. 2018;24(4):185-190. Metody pomiaru skladu ciala w pediatrii - przeglad. Czesc 1. doi:10.5114/pedm.2018.83365
Pencharz PB. Assessment of protein nutritional status in children. Pediatr Blood Cancer. 2008;50(2 Suppl):445-446; discussion 451. doi:10.1002/pbc.21415
National Health and Nutrition Examination Survey (NHANES). Anthropometry Procedures Manual. 2016.
Evans CR, Karnovsky A, Kovach MA, Standiford TJ, Burant CF, Stringer KA. Untargeted LC-MS metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res. 2014;13(2):640-649. doi:10.1021/pr4007624
Kachman M, Habra H, Duren W, et al. Deep annotation of untargeted LC-MS metabolomics data with Binner. Bioinformatics. 2020;36(6):1801-1806. doi:10.1093/bioinformatics/btz798
Fernandez-Albert F, Llorach R, Garcia-Aloy M, Ziyatdinov A, Andres-Lacueva C, Perera A. Intensity drift removal in LC/MS metabolomics by common variance compensation. Bioinformatics. 2014;30(20):2899-2905. doi:10.1093/bioinformatics/btu423
Chen M, Rao RS, Zhang Y, Zhong CX, Thelen JJ. A modified data normalization method for GC-MS-based metabolomics to minimize batch variation. Springerplus. 2014;3:439. doi:10.1186/2193-1801-3-439
Thonusin C, IglayReger HB, Soni T, Rothberg AE, Burant CF, Evans CR. Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data. J Chromatogr A. 2017;1523:265-274. doi:10.1016/j.chroma.2017.09.023
National Institute of Public Health. The Compiled México-INSP Food Composition Data Bank. 2002.
Wu Y, Goodrich JM, Dolinoy DC, et al. Accelerometer-measured physical activity, reproductive hormones, and DNA methylation. Med Sci Sports Exerc. 2020;52(3):598-607. doi:10.1249/MSS.0000000000002175
Chandler JL, Brazendale K, Beets MW, Mealing BA. Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children. Pediatr Obes. 2016;11(2):120-127. doi:10.1111/ijpo.12033
AMAI. Avances del Comité de Niveles Socioeconómicos. Comité de Niveles Socioeconómicos. Cuestionario para la Asignación de NSE a Hogares Regla 13 X 6 Versión 112004. 2004.
H. LR. Nivel socioeconómico AMAI. Comparación de la distribución del nivel socioeconómico: Índice AMAI con la Encuesta Nacional de Ingresos y Gastos de los Hogares INEGI. 2008.
Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13-23. doi:10.1136/adc.45.239.13
Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291-303. doi:10.1136/adc.44.235.291
de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660-667. doi:10.2471/blt.07.043497
Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284-294. doi:10.1111/j.2047-6310.2012.00064.x
Zellner A. An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. J Am Stat Assoc. 1962;57(298):348-368.
Staiano AE, Broyles ST, Gupta AK, Malina RM, Katzmarzyk PT. Maturity-associated variation in total and depot-specific body fat in children and adolescents. Am J Hum Biol. 2013;25(4):473-479. doi:10.1002/ajhb.22380
Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 1969;281(15):811-816. doi:10.1056/NEJM196910092811503
Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr. 2011;2(6):445-456. doi:10.3945/an.111.000737
Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol. 2017;8:10. doi:10.1186/s40104-016-0139-z
Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448-453. doi:10.1038/nm.2307
Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr. 2017;14:30. doi:10.1186/s12970-017-0184-9
Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 2014;19(3):380-392. doi:10.1016/j.cmet.2014.01.002
Wada F, Usami M. Studies on fatty acid omega-oxidation. Antiketogenic effect and gluconeogenicity of dicarboxylic acids. Biochim Biophys Acta. 1977;487(2):361-368.
Kim JY, Tfayli H, Michaliszyn SF, Arslanian S. Impaired lipolysis, diminished fat oxidation, and metabolic inflexibility in obese girls with polycystic ovary syndrome. J Clin Endocrinol Metab. 2018;103(2):546-554. doi:10.1210/jc.2017-01958
Eissa MA, Dai S, Mihalopoulos NL, Day RS, Harrist RB, Labarthe DR. Trajectories of fat mass index, fat free-mass index, and waist circumference in children: project HeartBeat! Am J Prev Med. 2009;37(1 Suppl):S34-S39. doi:10.1016/j.amepre.2009.04.005
Moran A, Jacobs DR Jr, Steinberger J, et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes. 1999;48(10):2039-2044. doi:10.2337/diabetes.48.10.2039
Saner C, Harcourt BE, Pandey A, et al. Sex and puberty-related differences in metabolomic profiles associated with adiposity measures in youth with obesity. Metabolomics. 2019;15(5):75. doi:10.1007/s11306-019-1537-y
Maynard LM, Wisemandle W, Roche AF, Chumlea WC, Guo SS, Siervogel RM. Childhood body composition in relation to body mass index. Pediatrics. 2001;107(2):344-350. doi:10.1542/peds.107.2.344
Chula de Castro JA, Lima TR, Silva DAS. Body composition estimation in children and adolescents by bioelectrical impedance analysis: a systematic review. J Bodyw Mov Ther. 2018;22(1):134-146. doi:10.1016/j.jbmt.2017.04.010

Auteurs

Yanelli Rodríguez-Carmona (Y)

Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.

Jennifer L Meijer (JL)

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA.

Yiwang Zhou (Y)

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.

Erica C Jansen (EC)

Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.

Wei Perng (W)

Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
Department of Epidemiology and the Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.

Margaret Banker (M)

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.

Peter X K Song (PXK)

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.

Martha María Téllez-Rojo (MM)

Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico.

Alejandra Cantoral (A)

Departamento de Salud, Universidad Iberoamericana, Mexico City, Mexico.

Karen E Peterson (KE)

Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH