Effect of a speed ascent to the top of Europe on cognitive function in elite climbers.
Altitude
Cognitive control
Exercise
Reaction time
Simon task
Journal
European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
19
06
2021
accepted:
19
11
2021
pubmed:
8
1
2022
medline:
15
3
2022
entrez:
7
1
2022
Statut:
ppublish
Résumé
The combined effects of acute hypoxia and exercise on cognition remain to be clarified. We investigated the effect of speed climbing to high altitude on reactivity and inhibitory control in elite climbers. Eleven elite climbers performed a speed ascent of the Mont-Blanc (4810 m) and were evaluated pre- (at 1000 m) and immediately post-ascent (at 3835 m). In both conditions, a Simon task was done at rest (single-task session, ST) and during a low-intensity exercise (dual-task session, DT). Prefrontal cortex (PFC) oxygenation and middle cerebral artery velocity (MCAv) were monitored using near-infrared spectroscopy and transcranial Doppler, respectively, during the cognitive task. Self-perceived mental fatigue and difficulty to perform the cognitive tests were estimated using a visual analog scale. Heart rate and pulse oxygenation (SpO Elite climbers performed an intense (~ 50% of the time ≥ 80% of maximal heart rate) and prolonged (8h58 ± 6 min) exercise in hypoxia (minimal SpO Cognitive control is not altered in elite climbers after a speed ascent to high-altitude despite substantial cerebral deoxygenation and fatigue perception.
Identifiants
pubmed: 34993575
doi: 10.1007/s00421-021-04855-6
pii: 10.1007/s00421-021-04855-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
635-649Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ainslie PN, Hoiland RL (2014) Transcranial Doppler ultrasound: valid, invalid, or both? J Appl Physiol 117:1081–1083. https://doi.org/10.1152/japplphysiol.00854.2014
doi: 10.1152/japplphysiol.00854.2014
pubmed: 25257879
Ainslie PN, Barach A, Murrell C et al (2007) Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Am J Physiol Heart Circ Physiol 292:H976–H983. https://doi.org/10.1152/ajpheart.00639.2006
doi: 10.1152/ajpheart.00639.2006
pubmed: 17012355
Algaze I, Phillips L, Inglis P et al (2020) Incidence of mild cognitive impairment with ascending altitude. High Alt Med Biol 21:184–191. https://doi.org/10.1089/ham.2019.0111
doi: 10.1089/ham.2019.0111
pubmed: 32282276
Ando S, Hatamoto Y, Sudo M et al (2013) The effects of exercise under hypoxia on cognitive function. PLoS ONE 8:e63630. https://doi.org/10.1371/journal.pone.0063630
doi: 10.1371/journal.pone.0063630
pubmed: 23675496
pmcid: 3651238
Ando S, Komiyama T, Sudo M et al (2020) The interactive effects of acute exercise and hypoxia on cognitive performance: a narrative review. Scand J Med Sci Sports 30:384–398. https://doi.org/10.1111/sms.13573
doi: 10.1111/sms.13573
pubmed: 31605635
Bouzat P, Séchaud G, Banco P et al (2018) The effect of zolpidem on cognitive function and postural control at high altitude. Sleep. https://doi.org/10.1093/sleep/zsy153
doi: 10.1093/sleep/zsy153
pubmed: 30099547
Brothers RM, Zhang R (2016) CrossTalk opposing view: the middle cerebral artery diameter does not change during alterations in arterial blood gases and blood pressure: CrossTalk. J Physiol 594:4077–4079. https://doi.org/10.1113/JP271884
doi: 10.1113/JP271884
pubmed: 27010011
pmcid: 4806218
Browne SE, Flynn MJ, O’Neill BV, et al (2017) Effects of acute high-intensity exercise on cognitive performance in trained individuals: a systematic review. In: Progress in brain research. Elsevier, pp 161–187
Brugniaux JV, Hodges ANH, Hanly PJ, Poulin MJ (2007) Cerebrovascular responses to altitude. Respir Physiol Neurobiol 158:212–223. https://doi.org/10.1016/j.resp.2007.04.008
doi: 10.1016/j.resp.2007.04.008
pubmed: 17544954
Burma JS, Macaulay A, Copeland P et al (2020) Comparison of cerebrovascular reactivity recovery following high-intensity interval training and moderate-intensity continuous training. Physiol Rep 8:e14467. https://doi.org/10.14814/phy2.14467
doi: 10.14814/phy2.14467
pubmed: 32506845
pmcid: 7276190
Davranche K, Audiffren M (2004) Facilitating effects of exercise on information processing. J Sports Sci 22:419–428. https://doi.org/10.1080/02640410410001675289
doi: 10.1080/02640410410001675289
pubmed: 15160595
Davranche K, McMorris T (2009) Specific effects of acute moderate exercise on cognitive control. Brain Cogn 69:565–570. https://doi.org/10.1016/j.bandc.2008.12.001
doi: 10.1016/j.bandc.2008.12.001
pubmed: 19138814
Davranche K, Brisswalter J, Radel R (2015) Where are the limits of the effects of exercise intensity on cognitive control? J Sport Health Sci 4:56–63. https://doi.org/10.1016/j.jshs.2014.08.004
doi: 10.1016/j.jshs.2014.08.004
Davranche K, Casini L, Arnal PJ et al (2016) Cognitive functions and cerebral oxygenation changes during acute and prolonged hypoxic exposure. Physiol Behav 164:189–197. https://doi.org/10.1016/j.physbeh.2016.06.001
doi: 10.1016/j.physbeh.2016.06.001
pubmed: 27262217
De Bels D, Pierrakos C, Bruneteau A et al (2019) Variation of cognitive function during a short stay at hypobaric hypoxia chamber (Altitude: 3842 M). Front Physiol 10:806. https://doi.org/10.3389/fphys.2019.00806
doi: 10.3389/fphys.2019.00806
pubmed: 31316394
pmcid: 6611417
Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168. https://doi.org/10.1146/annurev-psych-113011-143750
doi: 10.1146/annurev-psych-113011-143750
pubmed: 23020641
Hamacher D, Brennicke M, Behrendt T et al (2017) Motor-cognitive dual-tasking under hypoxia. Exp Brain Res 235:2997–3001. https://doi.org/10.1007/s00221-017-5036-y
doi: 10.1007/s00221-017-5036-y
pubmed: 28721516
Hoiland RL, Bain AR, Rieger MG et al (2016) Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol-Regul Integr Comp Physiol 310:R398–R413. https://doi.org/10.1152/ajpregu.00270.2015
doi: 10.1152/ajpregu.00270.2015
pubmed: 26676248
Imray C, Chan C, Stubbings A et al (2014) Time course variations in the mechanisms by which cerebral oxygen delivery is maintained on exposure to hypoxia/altitude. High Alt Med Biol 15:21–27. https://doi.org/10.1089/ham.2013.1079
doi: 10.1089/ham.2013.1079
pubmed: 24559404
Issa AN, Herman NM, Wentz RJ et al (2016) Association of cognitive performance with time at altitude, sleep quality, and acute mountain sickness symptoms. Wilderness Environ Med 27:371–378. https://doi.org/10.1016/j.wem.2016.04.008
doi: 10.1016/j.wem.2016.04.008
pubmed: 27460198
Joyce J, Graydon J, McMorris T, Davranche K (2009) The time course effect of moderate intensity exercise on response execution and response inhibition. Brain Cogn 71:14–19. https://doi.org/10.1016/j.bandc.2009.03.004
doi: 10.1016/j.bandc.2009.03.004
pubmed: 19346049
Komiyama T, Sudo M, Higaki Y et al (2015) Does moderate hypoxia alter working memory and executive function during prolonged exercise? Physiol Behav 139:290–296. https://doi.org/10.1016/j.physbeh.2014.11.057
doi: 10.1016/j.physbeh.2014.11.057
pubmed: 25460539
Komiyama T, Katayama K, Sudo M et al (2017) Cognitive function during exercise under severe hypoxia. Sci Rep 7:10000. https://doi.org/10.1038/s41598-017-10332-y
doi: 10.1038/s41598-017-10332-y
pubmed: 28855602
pmcid: 5577198
Lambourne K, Tomporowski P (2010) The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 1341:12–24. https://doi.org/10.1016/j.brainres.2010.03.091
doi: 10.1016/j.brainres.2010.03.091
pubmed: 20381468
Lefferts WK, Babcock MC, Tiss MJ et al (2016) Effect of hypoxia on cerebrovascular and cognitive function during moderate intensity exercise. Physiol Behav 165:108–118. https://doi.org/10.1016/j.physbeh.2016.07.003
doi: 10.1016/j.physbeh.2016.07.003
pubmed: 27402021
Lefferts WK, DeBlois JP, Soriano JE et al (2020) Preservation of neurovascular coupling to cognitive activity in anterior cerebrovasculature during incremental ascent to high altitude. High Alt Med Biol 21:20–27. https://doi.org/10.1089/ham.2019.0050
doi: 10.1089/ham.2019.0050
pubmed: 31750741
pmcid: 7097708
Leone C, Feys P, Moumdjian L et al (2017) Cognitive-motor dual-task interference: a systematic review of neural correlates. Neurosci Biobehav Rev 75:348–360. https://doi.org/10.1016/j.neubiorev.2017.01.010
doi: 10.1016/j.neubiorev.2017.01.010
pubmed: 28104413
Limmer M, Platen P (2018) The influence of hypoxia and prolonged exercise on attentional performance at high and extreme altitudes: a pilot study. PLoS ONE 13:e0205285. https://doi.org/10.1371/journal.pone.0205285
doi: 10.1371/journal.pone.0205285
pubmed: 30281651
pmcid: 6169942
Lu C, Proctor RW (1995) The influence of irrelevant location information on performance: a review of the Simon and spatial Stroop effects. Psychon Bull Rev 2:174–207. https://doi.org/10.3758/BF03210959
doi: 10.3758/BF03210959
pubmed: 24203654
McMorris T, Hale BJ (2012) Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain Cogn 80:338–351. https://doi.org/10.1016/j.bandc.2012.09.001
doi: 10.1016/j.bandc.2012.09.001
pubmed: 23064033
McMorris T, Hale BJ, Barwood M et al (2017) Effect of acute hypoxia on cognition: a systematic review and meta-regression analysis. Neurosci Biobehav Rev 74:225–232. https://doi.org/10.1016/j.neubiorev.2017.01.019
doi: 10.1016/j.neubiorev.2017.01.019
pubmed: 28111267
Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
doi: 10.1146/annurev.neuro.24.1.167
pubmed: 11283309
Ochi G, Yamada Y, Hyodo K et al (2018) Neural basis for reduced executive performance with hypoxic exercise. Neuroimage 171:75–83. https://doi.org/10.1016/j.neuroimage.2017.12.091
doi: 10.1016/j.neuroimage.2017.12.091
pubmed: 29305162
Puthon L, Bouzat P, Rupp T et al (2016) Physiological characteristics of elite high-altitude climbers: climbers in hypoxia. Scand J Med Sci Sports 26:1052–1059. https://doi.org/10.1111/sms.12547
doi: 10.1111/sms.12547
pubmed: 26314388
Roach RC, Hackett PH, Oelz O et al (2018) The 2018 Lake Louise acute mountain sickness score. High Alt Med Biol 19:4–6. https://doi.org/10.1089/ham.2017.0164
doi: 10.1089/ham.2017.0164
pubmed: 29583031
pmcid: 6191821
Rupp T, Thomas R, Perrey S, Stephane P (2008) Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 102:153–163. https://doi.org/10.1007/s00421-007-0568-7
doi: 10.1007/s00421-007-0568-7
pubmed: 17882449
Sampson JB, Cymerman A, Burse RL et al (1983) Procedures for the measurement of acute mountain sickness. Aviat Space Environ Med 54:1063–1073
pubmed: 6661120
Shoemaker LN, Wilson LC, Lucas SJE et al (2021) Indomethacin markedly blunts cerebral perfusion and reactivity, with little cognitive consequence in healthy young and older adults. J Physiol 599:1097–1113. https://doi.org/10.1113/JP280118
doi: 10.1113/JP280118
pubmed: 33185896
Simon JR (1990) The effects of an irrelevant directional CUE on human information processing. In: Advances in psychology. Elsevier, pp 31–86
Subudhi AW, Miramon BR, Granger ME (1985) Roach RC (2009) Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J Appl Physiol Bethesda Md 106:1153–1158. https://doi.org/10.1152/japplphysiol.91475.2008
doi: 10.1152/japplphysiol.91475.2008
Taylor L, Watkins SL, Marshall H et al (2016) The impact of different environmental conditions on cognitive function: a focused review. Front Physiol. https://doi.org/10.3389/fphys.2015.00372
doi: 10.3389/fphys.2015.00372
pubmed: 27965587
pmcid: 5126702
Temesi J, Arnal PJ, Davranche K et al (2013) Does central fatigue explain reduced cycling after complete sleep deprivation? Med Sci Sports Exerc 45:2243–2253. https://doi.org/10.1249/MSS.0b013e31829ce379
doi: 10.1249/MSS.0b013e31829ce379
pubmed: 23760468
Verges S, Rupp T, Jubeau M et al (2012) Cerebral perturbations during exercise in hypoxia. Am J Physiol-Regul Integr Comp Physiol 302:R903–R916. https://doi.org/10.1152/ajpregu.00555.2011
doi: 10.1152/ajpregu.00555.2011
pubmed: 22319046
Wickens CD, Keller JW, Shaw C (2015) Human factors in high-altitude mountaineering. J Hum Perform Extreme Environ. https://doi.org/10.7771/2327-2937.1065
doi: 10.7771/2327-2937.1065
Willie CK, Colino FL, Bailey DM et al (2011) Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods 196:221–237. https://doi.org/10.1016/j.jneumeth.2011.01.011
doi: 10.1016/j.jneumeth.2011.01.011
pubmed: 21276818
Wilson MH, Newman S, Imray CH (2009) The cerebral effects of ascent to high altitudes. Lancet Neurol 8:175–191. https://doi.org/10.1016/S1474-4422(09)70014-6
doi: 10.1016/S1474-4422(09)70014-6
pubmed: 19161909